72 research outputs found
Temperature and Pressure Dependent Kinetics of QOOH Decomposition and Reaction with O2: Experimental and Theoretical Investigations of QOOH Radicals Derived from Cl + (CH3)3COOH
QOOH radicals are key species in autoignition, produced by internal isomerisations of RO2 radicals, and are central to chain branching reactions in low temperature combustion. The kinetics of QOOH radical decomposition and reaction with O2 have been determined as a function of temperature and pressure, using observations of OH radical production and decay following H-atom abstraction from tertiary-butyl hydroperoxide ((CH3)3COOH) by Cl atoms to produce QOOH (.CH2(CH3)2COOH) radicals. The kinetics of QOOH decomposition have been investigated as a function of temperature (251 to 298 K), and pressure (10 to 350 Torr), in helium and nitrogen bath gases, and those of the reaction between QOOH and O2 have been investigated as a function of temperature (251 to 304 K), and pressure (10 to 100 Torr) in He and N2. Decomposition of the QOOH radicals was observed to display temperature and pressure dependence, with a barrier height for decomposition of (44.7 Β± 4.0) kJ mol-1 determined by master equation fitting to the experimental data. The rate coefficient for the reaction between QOOH and O2 was determined to be (5.6 Β± 1.7) Γ 10-13 cm3 s-1 at 298 K, with no significant dependence on pressure, and can be described by the Arrhenius parameters A = (7.3 Β± 6.8) Γ 10-14 cm3 s-1 and Ea = -(5.4 Β± 2.1) kJ mol-1 in the temperature range 251 to 304 K. This work represents the first measurements of any QOOH radical kinetics as a function of temperature and pressure
The Dynamical Structure and Evolution of Giant Molecular Clouds
Giant molecular clouds (GMCs) are the sites of star formation in the Galaxy. Many of their properties can be understood in terms of a model in which the GMCs and the star-forming clumps within them are in approximate pressure equilibrium, with turbulent motions treated as a separate pressure component
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Screening for foot problems in children: is this practice justifiable?
Podiatry screening of children is a common practice, which occurs largely without adequate data to support the need for such activity. Such programs may be either formalised, or more ad hoc in nature, depending upon the use of guidelines or existing models. Although often not used, the well-established criteria for assessing the merits of screening programs can greatly increase the understanding as to whether such practices are actually worthwhile. This review examines the purpose of community health screening in the Australian context, as occurs for tuberculosis, breast, cervical and prostate cancers, and then examines podiatry screening practices for children with reference to the criteria of the World Health Organisation (WHO). Topically, the issue of paediatric foot posture forms the focus of this review, as it presents with great frequency to a range of clinicians. Comparison is made with developmental dysplasia of the hip, in which instance the WHO criteria are well met. Considering that the burden of the condition being screened for must be demonstrable, and that early identification must be found to be beneficial, in order to justify a screening program, there is no sound support for either continuing or establishing podiatry screenings for children
The Mass Distribution and Rotation Curve in the Galaxy
The mass distribution in the Galaxy is determined by dynamical and
photometric methods. Rotation curves are the major tool for determining the
dynamical mass distribution in the Milky Way and spiral galaxies. The
photometric (statistical) method utilizes luminosity profiles from optical and
infrared observations, and assumes empirical values of the mass-to-luminosity
(M/L) ratio to convert the luminosity to mass. In this chapter the dynamical
method is described in detail, and rotation curves and mass distribution in the
Milky Way and nearby spiral galaxies are presented. The dynamical method is
categorized into two methods: the decomposition method and direct method. The
former fits the rotation curve by calculated curve assuming several mass
components such as a bulge, disk and halo, and adjust the dynamical parameters
of each component. Explanations are given of the mass profiles as the de
Vaucouleurs law, exponential disk, and dark halo profiles inferred from
numerical simulations. Another method is the direct method, with which the mass
distribution can be directly calculated from the data of rotation velocities
without employing any mass models. Some results from both methods are
presented, and the Galactic structure is discussed in terms of the mass.
Rotation curves and mass distributions in external galaxies are also discussed,
and the fundamental mass structures are shown to be universal.Comment: 54 pages, 25 figures, in 'Planets, Stars and Stellar Systems',
Springer, Vol. 5, ed. G. Gilmore, Chap. 19. Note: Preprint with full figures
is available from http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/2013psss
Mapping Peptidergic Cells in Drosophila: Where DIMM Fits In
The bHLH transcription factor DIMMED has been associated with the differentiation of peptidergic cells in Drosophila. However, whether all Drosophila peptidergic cells express DIMM, and the extent to which all DIMM cells are peptidergic, have not been determined. To address these issues, we have mapped DIMM expression in the central nervous system (CNS) and periphery in the late larval stage Drosophila. At 100 hr after egg-laying, DIMM immunosignals are largely congruent with a dimm-promoter reporter (c929-GAL4) and they present a stereotyped pattern of 306 CNS cells and 52 peripheral cells. We assigned positional values for all DIMM CNS cells with respect to reference gene expression patterns, or to patterns of secondary neuroblast lineages. We could assign provisional peptide identities to 68% of DIMM-expressing CNS cells (207/306) and to 73% of DIMM-expressing peripheral cells (38/52) using a panel of 24 markers for Drosophila neuropeptide genes. Furthermore, we found that DIMM co-expression was a prevalent feature within single neuropeptide marker expression patterns. Of the 24 CNS neuropeptide gene patterns we studied, six patterns are >90% DIMM-positive, while 16 of 22 patterns are >40% DIMM-positive. Thus most or all DIMM cells in Drosophila appear to be peptidergic, and many but not all peptidergic cells express DIMM. The co-incidence of DIMM-expression among peptidergic cells is best explained by a hypothesis that DIMM promotes a specific neurosecretory phenotype we term LEAP. LEAP denotes Large cells that display Episodic release of Amidated Peptides
Controlling irregular migration: International human rights standards and the Hungarian legal framework
In the summer of 2015 Hungary constructed a 175 km long barbed-wire fence at its southern border with Serbia. New criminal offences and asylum procedures were introduced that limited access to refugee status determination and ignored agreed EU asylum policy, deterring and de facto preventing asylum seekers from entering Hungarian territory. This paper provides an analysis of these new measures, which criminalized asylum seekers, and the subsequent Hungarian policy in relation to the case law of the European Court of Human Rights β arguing that the Hungarian authorities excessively abused their discretion in implementing these new policies of immigration and border control
- β¦