56 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Representativeness of microsatellite distributions in genomes, as revealed by 454 GS-FLX Titanium pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites are markers of choice in population genetics and genomics, as they provide useful insight into patterns and processes as diverse as genome evolutionary dynamics and demographic processes. The acquisition of microsatellites through multiplex-enriched libraries and 454 GS-FLX Titanium pyrosequencing is a promising new tool for the isolation of new markers in unknown genomes. This approach can also be used to evaluate the extent to which microsatellite-enriched libraries are representative of the genome from which they were isolated. In this study, we deciphered potential discrepancies in microsatellite content recovery for two reference genomes (<it>Apis mellifera </it>and <it>Danio rerio</it>), selected on the basis of their extreme heterogeneity in terms of the proportions and distributions of microsatellites on chromosomes.</p> <p>Results</p> <p>The <it>A. mellifera </it>genome, in particular, was found to be highly heterogeneous, due to extremely high rates of recombination, with hotspots, but the only bias consistently introduced into pyrosequenced multiplex-enriched libraries concerned sequence length, with the overrepresentation of sequences 160 to 320 bp in length. Other deviations from expected proportions or distributions of motifs on chromosomes were observed, but the significance and intensity of these deviations was mostly limited. Furthermore, no consistent adverse competition between multiplexed probes was observed during the motif enrichment phase.</p> <p>Conclusions</p> <p>This approach therefore appears to be a promising strategy for improving the development of microsatellites, as it introduces no major bias in terms of the proportions and distribution of microsatellites.</p

    Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus

    Get PDF
    The factors that control elemental ratios within phytoplankton, like carbon:nitrogen:phosphorus (C:N:P), are key to biogeochemical cycles. Previous studies have identified relationships between nutrient-limited growth and elemental ratios in large eukaryotes, but little is known about these interactions in small marine phytoplankton like the globally important Cyanobacteria. To improve our understanding of these interactions in picophytoplankton, we asked how cellular elemental stoichiometry varies as a function of steady-state, N- and P-limited growth in laboratory chemostat cultures of Synechococcus WH8102. By combining empirical data and theoretical modeling, we identified a previously unrecognized factor (growth-dependent variability in cell size) that controls the relationship between nutrient-limited growth and cellular elemental stoichiometry. To predict the cellular elemental stoichiometry of phytoplankton, previous theoretical models rely on the traditional Droop model, which purports that the acquisition of a single limiting nutrient suffices to explain the relationship between a cellular nutrient quota and growth rate. Our study, however, indicates that growth-dependent changes in cell size have an important role in regulating cell nutrient quotas. This key ingredient, along with nutrient-uptake protein regulation, enables our model to predict the cellular elemental stoichiometry of Synechococcus across a range of nutrient-limited conditions. Our analysis also adds to the growth rate hypothesis, suggesting that P-rich biomolecules other than nucleic acids are important drivers of stoichiometric variability in Synechococcus. Lastly, by comparing our data with field observations, our study has important ecological relevance as it provides a framework for understanding and predicting elemental ratios in ocean regions where small phytoplankton like Synechococcus dominates

    Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells – Platforms for Future Clinical Applications

    Get PDF
    Clinically compliant human embryonic stem cells (hESCs) should be developed in adherence to ethical standards, without risk of contamination by adventitious agents. Here we developed for the first time animal-component free and good manufacturing practice (GMP)-compliant hESCs. After vendor and raw material qualification, we derived xeno-free, GMP-grade feeders from umbilical cord tissue, and utilized them within a novel, xeno-free hESC culture system. We derived and characterized three hESC lines in adherence to regulations for embryo procurement, and good tissue, manufacturing and laboratory practices. To minimize freezing and thawing, we continuously expanded the lines from initial outgrowths and samples were cryopreserved as early stocks and banks. Batch release criteria included DNA-fingerprinting and HLA-typing for identity, characterization of pluripotency-associated marker expression, proliferation, karyotyping and differentiation in-vitro and in-vivo. These hESCs may be valuable for regenerative therapy. The ethical, scientific and regulatory methodology presented here may serve for development of additional clinical-grade hESCs

    Similarities and differences in the autonomic control of airway and urinary bladder smooth muscle

    Get PDF
    The airways and the urinary bladder are both hollow organs serving very different functions, i.e. air flow and urine storage, respectively. While the autonomic nervous system seems to play only a minor if any role in the physiological regulation of airway tone during normal breathing, it is important in the physiological regulation of bladder smooth muscle contraction and relaxation. While both tissues share a greater expression of M2 than of M3 muscarinic receptors, smooth muscle contraction in both is largely mediated by the smaller M3 population apparently involving phospholipase C activation to only a minor if any extent. While smooth muscle in both tissues can be relaxed by β-adrenoceptor stimulation, this primarily involves β2-adrenoceptors in human airways and β3-adrenoceptors in human bladder. Despite activation of adenylyl cyclase by either subtype, cyclic adenosine monophosphate plays only a minor role in bladder relaxation by β-agonists; an important but not exclusive function is known in airway relaxation. While airway β2-adrenoceptors are sensitive to agonist-induced desensitization, β3-adrenoceptors are generally considered to exhibit much less if any sensitivity to desensitization. Gene polymorphisms exist in the genes of both β2- and β3-adrenoceptors. Despite being not fully conclusive, the available data suggest some role of β2-adrenoceptor polymorphisms in airway function and its treatment by receptor agonists, whereas the available data on β3-adrenoceptor polymorphisms and bladder function are too limited to allow robust interpretation. We conclude that the distinct functions of airways and urinary bladder are reflected in a differential regulation by the autonomic nervous system. Studying these differences may be informative for a better understanding of each tissue

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore