89 research outputs found

    Identification of chemokine receptors as potential modulators of endocrine resistance in oestrogen receptor–positive breast cancers

    Get PDF
    Introduction Endocrine therapies target oestrogenic stimulation of breast cancer (BC) growth, but resistance remains problematic. Our aims in this study were (1) to identify genes most strongly associated with resistance to endocrine therapy by intersecting global gene transcription data from patients treated presurgically with the aromatase inhibitor anastrazole with those from MCF7 cells adapted to long-term oestrogen deprivation (LTED) (2) to assess the clinical value of selected genes in public clinical data sets and (3) to determine the impact of targeting these genes with novel agents. Methods Gene expression and Ki67 data were available from 69 postmenopausal women with oestrogen receptor–positive (ER+) early BC, at baseline and 2 weeks after anastrazole treatment, and from cell lines adapted to LTED. The functional consequences of target genes on proliferation, ER-mediated transcription and downstream cell signalling were assessed. Results By intersecting genes predictive of a poor change in Ki67 with those upregulated in LTED cells, we identified 32 genes strongly correlated with poor antiproliferative response that were associated with inflammation and/or immunity. In a panel of LTED cell lines, C-X-C chemokine receptor type 7 (CXCR7) and CXCR4 were upregulated compared to their wild types (wt), and CXCR7, but not CXCR4, was associated with reduced relapse-free survival in patients with ER+ BC. The CXCR4 small interfering RNA variant (siCXCR4) had no specific effect on the proliferation of wt-SUM44, wt-MCF7 and their LTED derivatives. In contrast, siCXCR7, as well as CCX733, a CXCR7 antagonist, specifically suppressed the proliferation of MCF7-LTED cells. siCXCR7 suppressed proteins associated with G1/S transition and inhibited ER transactivation in MCF7-LTED, but not wt-MCF7, by impeding association between ER and proline-, glutamic acid– and leucine-rich protein 1, an ER coactivator. Conclusions These data highlight CXCR7 as a potential therapeutic target warranting clinical investigation in endocrine-resistant BC

    Pitfalls in genetic testing: the story of missed SCN1A mutations

    Get PDF
    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. METHODS: We sent out a survey to 16 genetic centers performing SCN1A testing. RESULTS: We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. CONCLUSION: We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated

    Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development

    Get PDF
    Methylation of cytosine is a DNA modification associated with gene repression. Recently, a novel cytosine modification, 5-hydroxymethylcytosine (5-hmC) has been discovered. Here we examine 5-hmC distribution during mammalian development and in cellular systems, and show that the developmental dynamics of 5-hmC are different from those of 5-methylcytosine (5-mC); in particular 5-hmC is enriched in embryonic contexts compared to adult tissues. A detectable 5-hmC signal appears in pre-implantation development starting at the zygote stage, where the paternal genome is subjected to a genome-wide hydroxylation of 5-mC, which precisely coincides with the loss of the 5-mC signal in the paternal pronucleus. Levels of 5-hmC are high in cells of the inner cell mass in blastocysts, and the modification colocalises with nestin-expressing cell populations in mouse post-implantation embryos. Compared to other adult mammalian organs, 5-hmC is strongly enriched in bone marrow and brain, wherein high 5-hmC content is a feature of both neuronal progenitors and post-mitotic neurons. We show that high levels of 5-hmC are not only present in mouse and human embryonic stem cells (ESCs) and lost during differentiation, as has been reported previously, but also reappear during the generation of induced pluripotent stem cells; thus 5-hmC enrichment correlates with a pluripotent cell state. Our findings suggest that apart from the cells of neuronal lineages, high levels of genomic 5-hmC are an epigenetic feature of embryonic cell populations and cellular pluri- and multi-lineage potency. To our knowledge, 5-hmC represents the first epigenetic modification of DNA discovered whose enrichment is so cell-type specific

    The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast

    Get PDF
    Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture

    Drinking behaviours and blood alcohol concentration in four European drinking environments: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reducing harm in drinking environments is a growing priority for European alcohol policy yet few studies have explored nightlife drinking behaviours. This study examines alcohol consumption and blood alcohol concentration (BAC) in drinking environments in four European cities.</p> <p>Methods</p> <p>A short questionnaire was implemented among 838 drinkers aged 16-35 in drinking environments in four European cities, in the Netherlands, Slovenia, Spain and the UK. Questions included self-reported alcohol use before interview and expected consumption over the remainder of the night. Breathalyser tests were used to measured breath alcohol concentration (converted to BAC) at interview.</p> <p>Results</p> <p>Most participants in the Dutch (56.2%), Spanish (59.6%) and British (61.4%) samples had preloaded (cf Slovenia 34.8%). In those drinking < 3 h at interview, there were no differences in BAC by gender or nationality. In UK participants, BAC increased significantly in those who had been drinking longer, reaching 0.13% (median) in females and 0.17% in males drinking > 5 h. In other nationalities, BAC increases were less pronounced or absent. High BAC (> 0.08%) was associated with being male, aged > 19, British and having consumed spirits. In all cities most participants intended to drink enough alcohol to constitute binge drinking.</p> <p>Conclusions</p> <p>Different models of drinking behaviour are seen in different nightlife settings. Here, the UK sample was typified by continued increases in inebriation compared with steady, more moderate intoxication elsewhere. With the former being associated with higher health risks, European alcohol policy must work to deter this form of nightlife.</p

    Nighttime assaults: using a national emergency department monitoring system to predict occurrence, target prevention and plan services

    Get PDF
    Background: Emergency department (ED) data have the potential to provide critical intelligence on when violence is most likely to occur and the characteristics of those who suffer the greatest health impacts. We use a national experimental ED monitoring system to examine how it could target violence prevention interventions towards at risk communities and optimise acute responses to calendar, holiday and other celebration-related changes in nighttime assaults. Methods: A cross-sectional examination of nighttime assault presentations (6.01 pm to 6.00 am; n = 330,172) over a three-year period (31st March 2008 to 30th March 2011) to English EDs analysing changes by weekday, month, holidays, major sporting events, and demographics of those presenting. Results: Males are at greater risk of assault presentation (adjusted odds ratio [AOR] 3.14, 95% confidence intervals [CIs] 3.11-3.16; P < 0.001); with male:female ratios increasing on more violent nights. Risks peak at age 18 years. Deprived individuals have greater risks of presenting across all ages (AOR 3.87, 95% CIs 3.82-3.92; P < 0.001). Proportions of assaults from deprived communities increase midweek. Female presentations in affluent areas peak aged 20 years. By age 13, females from deprived communities exceed this peak. Presentations peak on Friday and Saturday nights and the eves of public holidays; the largest peak is on New Year’s Eve. Assaults increase over summer with a nadir in January. Impacts of annual celebrations without holidays vary. Some (Halloween, Guy Fawkes and St Patrick’s nights) see increased assaults while others (St George’s and Valentine’s Day nights) do not. Home nation World Cup football matches are associated with nearly a three times increase in midweek assault presentation. Other football and rugby events examined show no impact. The 2008 Olympics saw assaults fall. The overall calendar model strongly predicts observed presentations (R2 = 0.918; P < 0.001). Conclusions: To date, the role of ED data has focused on helping target nightlife police activity. Its utility is much greater; capable of targeting and evaluating multi-agency life course approaches to violence prevention and optimising frontline resources. National ED data are critical for fully engaging health services in the prevention of violence

    ESR1 Is Co-Expressed with Closely Adjacent Uncharacterised Genes Spanning a Breast Cancer Susceptibility Locus at 6q25.1

    Get PDF
    Approximately 80% of human breast carcinomas present as oestrogen receptor α-positive (ER+ve) disease, and ER status is a critical factor in treatment decision-making. Recently, single nucleotide polymorphisms (SNPs) in the region immediately upstream of the ER gene (ESR1) on 6q25.1 have been associated with breast cancer risk. Our investigation of factors associated with the level of expression of ESR1 in ER+ve tumours has revealed unexpected associations between genes in this region and ESR1 expression that are important to consider in studies of the genetic causes of breast cancer risk. RNA from tumour biopsies taken from 104 postmenopausal women before and after 2 weeks treatment with an aromatase (oestrogen synthase) inhibitor was analyzed on Illumina 48K microarrays. Multiple-testing corrected Spearman correlation revealed that three previously uncharacterized open reading frames (ORFs) located immediately upstream of ESR1, C6ORF96, C6ORF97, and C6ORF211 were highly correlated with ESR1 (Rs = 0.67, 0.64, and 0.55 respectively, FDR<1×10−7). Publicly available datasets confirmed this relationship in other groups of ER+ve tumours. DNA copy number changes did not account for the correlations. The correlations were maintained in cultured cells. An ERα antagonist did not affect the ORFs' expression or their correlation with ESR1, suggesting their transcriptional co-activation is not directly mediated by ERα. siRNA inhibition of C6ORF211 suppressed proliferation in MCF7 cells, and C6ORF211 positively correlated with a proliferation metagene in tumours. In contrast, C6ORF97 expression correlated negatively with the metagene and predicted for improved disease-free survival in a tamoxifen-treated published dataset, independently of ESR1. Our observations suggest that some of the biological effects previously attributed to ER could be mediated and/or modified by these co-expressed genes. The co-expression and function of these genes may be important influences on the recently identified relationship between SNPs in this region and breast cancer risk

    Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data

    Get PDF
    The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient–parent trios that were generally prescreened for rare metabolic disorders. In the current sample, our rare variant transmission disequilibrium test did not identify individual genes with significantly distorted transmission over expectation after correcting for the multiple tests. While the rare variant transmission disequilibrium test did not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population

    Rare coding variants in genes encoding GABA_A receptors in genetic generalised epilepsies: an exome-based case-control study

    Get PDF
    BACKGROUND: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. METHODS: For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. FINDINGS: Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41-4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05-2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02-2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. INTERPRETATION: Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. FUNDING: EuroEPINOMICS (European Science Foundation through national funding organisations), Epicure and EpiPGX (Sixth Framework Programme and Seventh Framework Programme of the European Commission), Research Unit FOR2715 (German Research Foundation and Luxembourg National Research Fund)
    corecore