31 research outputs found

    A transcriptomic analysis of Echinococcus granulosus larval stages:implications for parasite biology and host adaptation

    Get PDF
    The cestode Echinococcus granulosus--the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide--is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages.We generated ~10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H(+)-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development.This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths

    Semantics of agent-based service delegation and alignment

    No full text
    In this paper we concentrate on conceptual modeling and semantics of service delegation and alignment in information systems. In delegation, a source company wishes to hand over parts of its functionality together with related responsibilities to a supplying party. From the side of the outsourcer the search for a suitable supplier mostly will be a manual process with all the consequences of a long time to market, as well as trial and error before a good fit is obtained between both related parties. This paper addresses an agent-based solution for improving this match-making process in B2B markets. Part of the match-making process will be the alignment of business processes on the side of the outsourcer as well on the side of the supplier. We will provide a formal means to ensure that the delegation relationship, determined by a ruling service level agreement (SLA), satisfies specific correctness criteria. These correctness criteria are defined in terms of consistency and completeness between the delegated operation and the associated operation offered by the supplier. Our correctness criterion will concern mappings between an existing delegator schema and an existing supplier schema, and will address both semantical and ontological aspects pertaining to delegation and alignment. Agent-based delegation together with formal specifications can prove their value in the process of constructing delegation contracts. Our analysis will be performed within the modeling framework based on the UML/OCL formalism. The concepts we discussed in this paper are illustrated by an example of companies delegating billing services to Billing Service Providers

    ChIP: a Choreographic Integration Process

    No full text
    International audienceOver the years, organizations acquired disparate software systems, each answering one specific need. Currently, the desirable outcomes of integrating these systems (higher degrees of automation and better system consistency) are often outbalanced by the complexity of mitigating their discrepancies. These problems are magnified in the decentralized setting (e.g., cross-organizational cases) where the integration is usually dealt with ad-hoc "glue" connectors, each integrating two or more systems. Since the overall logic of the integration is spread among many glue connectors, these solutions are difficult to program correctly (making them prone to misbehaviors and system blocks), maintain, and evolve. In response to these problems, we propose ChIP, an integration process advocating choreographic programs as intermediate artifacts to refine high-level global specifications (e.g., UML Sequence Diagrams), defined by the domain experts of each partner, into concrete, distributed implementations. In ChIP, once the stakeholders agree upon a choreographic integration design, they can automatically generate the respective local connectors, which are guaranteed to faithfully implement the described distributed logic. In the paper, we illustrate ChIP with a pilot from the EU EIT Digital project SMAll, aimed at integrating pre-existing systems from government, university, and transport industry
    corecore