219 research outputs found
Closely Related Tree Species Differentially Influence the Transfer of Carbon and Nitrogen from Leaf Litter Up the Aquatic Food Web
Decomposing leaf litter in streams provides habitat and nutrition for aquatic insects. Despite large differences in the nutritional qualities of litter among different plant species, their effects on aquatic insects are often difficult to detect. We evaluated how leaf litter of two dominant riparian species (Populus fremontii and P. angustifolia) influenced carbon and nitrogen assimilation by aquatic insect communities, quantifying assimilation rates using stable isotope tracers (13C, 15N). We tested the hypothesis that element fluxes from litter of different plant species better define aquatic insect community structure than insect relative abundances, which often fail. We found that (1) functional communities (defined by fluxes of carbon and nitrogen from leaf litter to insects) were different between leaf litter species, whereas more traditional insect communities (defined by relativized taxa abundances) were not different between leaf litter species, (2) insects assimilated N, but not C, at a higher rate from P. angustifolia litter compared to P. fremontii, even though P. angustifolia decomposes more slowly, and (3) the C:N ratio of material assimilated by aquatic insects was lower for P. angustifolia compared to P. fremontii, indicating higher nutritional quality, despite similar initial litter C:N ratios. These findings provide new evidence for the effects of terrestrial plant species on aquatic ecosystems via their direct influence on the transfer of elements up the food web. We demonstrate how isotopically labeled leaf litter can be used to assess the functioning of insect communities, uncovering patterns undetected by traditional approaches and improving our understanding of the association between food web structure and element cycling
Pulsar spins from an instability in the accretion shock of supernovae
Rotation-powered radio pulsars are born with inferred initial rotation
periods of order 300 ms (some as short as 20 ms) in core-collapse supernovae.
In the traditional picture, this fast rotation is the result of conservation of
angular momentum during the collapse of a rotating stellar core. This leads to
the inevitable conclusion that pulsar spin is directly correlated with the
rotation of the progenitor star. So far, however, stellar theory has not been
able to explain the distribution of pulsar spins, suggesting that the birth
rotation is either too slow or too fast. Here we report a robust instability of
the stalled accretion shock in core-collapse supernovae that is able to
generate a strong rotational flow in the vicinity of the accreting
proto-neutron star. Sufficient angular momentum is deposited on the
proto-neutron star to generate a final spin period consistent with
observations, even beginning with spherically symmetrical initial conditions.
This provides a new mechanism for the generation of neutron star spin and
weakens, if not breaks, the assumed correlation between the rotational periods
of supernova progenitor cores and pulsar spin.Comment: To be published in Natur
Carbohydrate mouth rinse: does it improve endurance exercise performance?
It is well known that carbohydrate (CHO) supplementation can improve performance in endurance exercises through several mechanisms such as maintenance of glycemia and sparing endogenous glycogen as well as the possibility of a central nervous-system action. Some studies have emerged in recent years in order to test the hypothesis of ergogenic action via central nervous system. Recent studies have demonstrated that CHO mouth rinse can lead to improved performance of cyclists, and this may be associated with the activation of brain areas linked to motivation and reward. These findings have already been replicated in other endurance modalities, such as running. This alternative seems to be an attractive nutritional tool to improve endurance exercise performance
Memory-encoding vibrations in a disconnecting air bubble
Many nonlinear processes, such as the propagation of waves over an ocean or the transmission of light pulses down an optical fibre1, are integrable in the sense that the dynamics has as many conserved quantities as there are independent variables. The result is a time evolution that retains a complete memory of the initial state. In contrast, the nonlinear dynamics near a finite-time singularity, in which physical quantities such as pressure or velocity diverge at a point in time, is believed to evolve towards a universal form, one independent of the initial state2. The break-up of a water drop in air3 or a viscous liquid inside an immiscible oil4,5 are processes that conform to this second scenario. These opposing scenarios collide in the nonlinearity produced by the formation of a finite-time singularity that is also integrable. We demonstrate here that the result is a novel dynamics with a dual character
Doxycycline compared to prednisolone therapy for patients with bullous pemphigoid: cost-effectiveness analysis of the BLISTER trial
BACKGROUND: Bullous pemphigoid (BP) is an autoimmune blistering skin disorder associated with significant morbidity and mortality. Doxycycline and prednisolone to treat bullous pemphigoid were compared within a randomised controlled trial (RCT). OBJECTIVES: To compare the cost-effectiveness of doxycycline-initiated and prednisolone-initiated treatment for patients with BP. METHODS: a multicentre, parallel-group, investigator-blinded RCT. Within-trial analysis used bivariate regression of costs and QALYs, with multiple imputation of missing data, informing a probabilistic assessment of incremental treatment cost-effectiveness from a health service perspective RESULTS: In the base case, there was no robust difference in costs or QALYs per patient at 1 year comparing doxycycline-initiated therapy with prednisolone-initiated therapy (net cost: £959, 95% CI -£24 to £1941; net QALYs: -0.024, 95% CI -0.088 to 0.041). However, findings varied by baseline blister severity. For patients with mild or moderate blistering (≤30) net costs and outcomes were similar. For patients with severe blistering (>30) net costs were higher (£2558, 95% CI -£82 to £5198) and quality of life poorer (-0.090 QALYs, 95% CI-0.222 to 0.042) for patients starting on doxycycline. The probability that doxycycline would be cost-effective for those with severe pemphigoid was 1.5% at a willingness to pay of £20,000/QALY. CONCLUSIONS: Consistent with the clinical findings of the BLISTER trial, patients with mild or moderate blistering should receive treatment guided by the safety and effectiveness of the drugs and patient preference - neither strategy is clearly a preferred use of NHS resources. However, prednisolone-initiated treatment may be more cost-effective for patients with severe blistering
Complex Consequences of Herbivory and Interplant Cues in Three Annual Plants
Information exchange (or signaling) between plants following herbivore damage has recently been shown to affect plant responses to herbivory in relatively simple natural systems. In a large, manipulative field study using three annual plant species (Achyrachaena mollis, Lupinus nanus, and Sinapis arvensis), we tested whether experimental damage to a neighboring conspecific affected a plant's lifetime fitness and interactions with herbivores. By manipulating relatedness between plants, we assessed whether genetic relatedness of neighboring individuals influenced the outcome of having a damaged neighbor. Additionally, in laboratory feeding assays, we assessed whether damage to a neighboring plant specifically affected palatability to a generalist herbivore and, for S. arvensis, a specialist herbivore. Our study suggested a high level of contingency in the outcomes of plant signaling. For example, in the field, damaging a neighbor resulted in greater herbivory to A. mollis, but only when the damaged neighbor was a close relative. Similarly, in laboratory trials, the palatability of S. arvensis to a generalist herbivore increased after the plant was exposed to a damaged neighbor, while palatability to a specialist herbivore decreased. Across all species, damage to a neighbor resulted in decreased lifetime fitness, but only if neighbors were closely related. These results suggest that the outcomes of plant signaling within multi-species neighborhoods may be far more context-specific than has been previously shown. In particular, our study shows that herbivore interactions and signaling between plants are contingent on the genetic relationship between neighboring plants. Many factors affect the outcomes of plant signaling, and studies that clarify these factors will be necessary in order to assess the role of plant information exchange about herbivory in natural systems
DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP)
<p>Abstract</p> <p>Background</p> <p>Multiple sclerosis (MS) is associated with pathogenic autoimmunity primarily focused on major CNS-myelin target antigens including myelin basic protein (MBP), proteolipidprotein (PLP), myelin oligodendrocyte protein (MOG). MS is a complex trait whereby the HLA genes, particularly class-II genes of HLA-DR15 haplotype, dominate the genetic contribution to disease-risk. Due to strong linkage disequilibrium in HLA-II region, it has been hard to establish precisely whether the functionally relevant effect derives from the DRB1*1501, DQA1*0102-DQB1*0602, or DRB5*0101 loci of HLA-DR15 haplotype, their combinations, or their epistatic interactions. Nevertheless, most genetic studies have indicated DRB1*1501 as a primary risk factor in MS. Here, we used 'HLA-humanized' mice to discern the potential relative contribution of DRB1*1501 and DQB1*0602 alleles to susceptibility to "humanized" MS-like disease induced by PLP, one of the most prominent and encephalitogenic target-antigens implicated in human MS.</p> <p>Methods</p> <p>The HLA-DRB1*1501- and HLA-DQB1*0602-Tg mice (MHC-II<sup>-/-</sup>), and control non-HLA-DR15-relevant-Tg mice were immunized with a set of overlapping PLP peptides or with recombinant soluble PLP for induction of "humanized" MS-like disease, as well as for ex-vivo analysis of immunogenic/immunodominant HLA-restricted T-cell epitopes and associated cytokine secretion profile.</p> <p>Results</p> <p>PLP autoimmunity in both HLA-DR15-Tg mice was focused on 139-151 and 175-194 epitopes. Strikingly, however, the HLA-DRB1*1501-transgenics were refractory to disease induction by any of the overlapping PLP peptides, while HLA-DQB1*0602 transgenics were susceptible to disease induction by PLP139-151 and PLP175-194 peptides. Although both transgenics responded to both peptides, the PLP139-151- and PLP175-194-reactive T-cells were directed to Th1/Th17 phenotype in DQB1*0602-Tg mice and towards Th2 in DRB1*1501-Tg mice.</p> <p>Conclusions</p> <p>While genome studies map a strong MS susceptibility effect to the region of DRB1*1501, our findings offer a rationale for potential involvement of pathogenic DQ6-associated autoimmunity in MS. Moreover, that DQB1*0602, but not DRB1*1501, determines disease-susceptibility to PLP in HLA-transgenics, suggests a potential differential, functional role for DQB1*0602 as a predisposing allele in MS. This, together with previously demonstrated disease-susceptibility to MBP and MOG in DRB1*1501-transgenics, also suggests a differential role for DRB1*1501 and DQB1*0602 depending on target antigen and imply a potential complex 'genotype/target antigen/phenotype' relationship in MS heterogeneity.</p
Increased Resistance of Bt Aspens to Phratora vitellinae (Coleoptera) Leads to Increased Plant Growth under Experimental Conditions
One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremula×Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance
Dispersive, superfluid-like shock waves in nonlinear optics
In most classical fluids, shock waves are strongly dissipative, their energy
being quickly lost through viscous damping. But in systems such as cold
plasmas, superfluids, and Bose-Einstein condensates, where viscosity is
negligible or non-existent, a fundamentally different type of shock wave can
emerge whose behaviour is dominated by dispersion rather than dissipation.
Dispersive shock waves are difficult to study experimentally, and analytical
solutions to the equations that govern them have only been found in one
dimension (1D). By exploiting a well-known, but little appreciated,
correspondence between the behaviour of superfluids and nonlinear optical
materials, we demonstrate an all-optical experimental platform for studying the
dynamics of dispersive shock waves. This enables us to observe the propagation
and nonlinear response of dispersive shock waves, including the interaction of
colliding shock waves, in 1D and 2D. Our system offers a versatile and more
accessible means for exploring superfluid-like and related dispersive
phenomena.Comment: 21 pages, 6 figures Revised abstrac
Fabrication Principles and Their Contribution to the Superior In Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids
We report here the design, development and performance of a novel formulation of liposome- encapsulated glucocorticoids (GCs). A highly efficient (>90%) and stable GC encapsulation was obtained based on a transmembrane calcium acetate gradient driving the active accumulation of an amphipathic weak acid GC pro-drug into the intraliposome aqueous compartment, where it forms a GC-calcium precipitate. We demonstrate fabrication principles that derive from the physicochemical properties of the GC and the liposomal lipids, which play a crucial role in GC release rate and kinetics. These principles allow fabrication of formulations that exhibit either a fast, second-order (t1/2 ∼1 h), or a slow, zero-order release rate (t1/2 ∼ 50 h) kinetics. A high therapeutic efficacy was found in murine models of experimental autoimmune encephalomyelitis (EAE) and hematological malignancies
- …