16 research outputs found

    Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains

    Get PDF
    RationaleIdentification of biomarkers that establish diagnosis or treatment response is critical to the advancement of research and management of patients with depression.ObjectiveOur goal was to identify biomarkers that can potentially assess fluoxetine response and risk to poor treatment outcome.MethodsWe measured behavior, gene expression, and the levels of 36 neurobiochemical analytes across a panel of genetically diverse mouse inbred lines after chronic treatment with water or fluoxetine.ResultsGlyoxylase 1 (GLO1) and guanine nucleotide-binding protein 1 (GNB1) mostly account for baseline anxiety-like and depressive-like behavior, indicating a common biological link between depression and anxiety. Fluoxetine-induced biochemical alterations discriminated positive responders, while baseline neurobiochemical differences differentiated negative responders (p < 0.006). Results show that glial fibrillary acidic protein, S100 beta protein, GLO1, and histone deacetylase 5 contributed most to fluoxetine response. These proteins are linked within a cellular growth/proliferation pathway, suggesting the involvement of cellular genesis in fluoxetine response. Furthermore, a candidate genetic locus that associates with baseline depressive-like behavior contains a gene that encodes for cellular proliferation/adhesion molecule (Cadm1), supporting a genetic basis for the role of neuro/gliogenesis in depression.ConclusionWe provided a comprehensive analysis of behavioral, neurobiochemical, and transcriptome data across 30 mouse inbred strains that has not been accomplished before. We identified biomarkers that influence fluoxetine response, which, altogether, implicate the importance of cellular genesis in fluoxetine treatment. More broadly, this approach can be used to assess a wide range of drug response phenotypes that are challenging to address in human samples.Electronic supplementary materialThe online version of this article (doi:10.1007/s00213-011-2574-z) contains supplementary material, which is available to authorized users

    Hippocampal group III mGlu receptor mRNA levels are not altered in specific mouse models of stress, depression and antidepressant action.

    No full text
    The neurotransmitter glutamate is increasingly being implicated as playing a role in the molecular pathology underlying depression. The group III family of metabotropic glutamate (mGlu) receptors (mGlu(4,) mGlu(7) and mGlu(8) receptors) remains the most poorly investigated of all glutamate receptors in this regard, despite early research efforts showing that they may be major players in stress-induced pathology, genetic vulnerability to the onset of depression and in the action of pharmacotherapies. To redress this deficit, we investigated whether the mRNA levels of the group III mGlu receptors display sensitivity to the preclinical stress models' chronic immobilisation stress (CIS) in BALB/c mice and chronic social defeat in BALB/c and C57BL/6j mice. We also investigated the potential of the mood stabiliser lithium to reverse any stress-induced alterations to expression levels of the group III mGlu receptors. Furthermore, we investigated if changes to hippocampal group III mGlu receptors are involved in the augmentation strategy of administering lithium in conjunction with the tricyclic antidepressant desipramine using BALB/c mice. Finally, we investigated whether differences in hippocampal group III mGlu receptors exist between the non-helpless NH/Rouen mouse line and the helpless H/Rouen line. We found no changes to hippocampal group III mGlu receptor expression in any of the stress models investigated, the H/Rouen mouse genetic model of depression or due to pharmacological treatment. This indicates that these receptors may not be involved in the manifestation of behavioural and physiological changes observed in these models and furthermore, may not contribute to the therapeutic mechanisms of the above mentioned pharmacotherapies

    GABAB(1) receptor subunit isoforms differentially regulate stress resilience.

    No full text
    Stressful life events increase the susceptibility to developing psychiatric disorders such as depression; however, many individuals are resilient to such negative effects of stress. Determining the neurobiology underlying this resilience is instrumental to the development of novel and more effective treatments for stress-related psychiatric disorders. GABAB receptors are emerging therapeutic targets for the treatment of stress-related disorders such as depression. These receptors are predominantly expressed as heterodimers of a GABAB(2) subunit with either a GABAB(1a) or a GABAB(1b) subunit. Here we show that mice lacking the GABAB(1b) receptor isoform are more resilient to both early-life stress and chronic psychosocial stress in adulthood, whereas mice lacking GABAB(1a) receptors are more susceptible to stress-induced anhedonia and social avoidance compared with wild-type mice. In addition, increased hippocampal expression of the GABAB(1b) receptor subunit is associated with a depression-like phenotype in the helpless H/Rouen genetic mouse model of depression. Stress resilience in GABAB(1b)(-/-) mice is coupled with increased proliferation and survival of newly born cells in the adult ventral hippocampus and increased stress-induced c-Fos activation in the hippocampus following early-life stress. Taken together, the data suggest that GABAB(1) receptor subunit isoforms differentially regulate the deleterious effects of stress and, thus, may be important therapeutic targets for the treatment of depression

    Caffeine reverts memory but not mood impairment in a depression-prone mouse strain with up-regulated Adenosine A(2A) receptor in hippocampal glutamate synapses

    No full text
    Caffeine prophylactically prevents mood and memory impairments through adenosine A(2A) receptor (A(2A)R) antagonism. A(2A)R antagonists also therapeutically revert mood and memory impairments, but it is not known if caffeine is also therapeutically or only prophylactically effective. Since depression is accompanied by mood and memory alterations, we now explored if chronic (4 weeks) caffeine consumption (0.3 g/L) reverts mood and memory impairment in helpless mice (HM, 12 weeks old), a bred-based model of depression. HM displayed higher immobility in the tail suspension and forced swimming tests, greater anxiety in the elevated plus maze, and poorer memory performance (modified Y-maze and object recognition). HM also had reduced density of synaptic (synaptophysin, SNAP-25), namely, glutamatergic (vGluT1; -22 +/- 7 %) and GABAergic (vGAT; -23 +/- 8 %) markers in the hippocampus. HM displayed higher A(2A)R density (72 +/- 6 %) in hippocampal synapses, an enhanced facilitation of hippocampal glutamate release by the A(2A)R agonist, CGS21680 (30 nM), and a larger LTP amplitude (54 +/- 8 % vs. 21 +/- 5 % in controls) that was restored to control levels (30 +/- 10 %) by the A(2A)R antagonist, SCH58261 (50 nM). Notably, caffeine intake reverted memory deficits and reverted the loss of hippocampal synaptic markers but did not affect helpless or anxiety behavior. These results reinforce the validity of HM as an animal model of depression by showing that they also display reference memory deficits. Furthermore, caffeine intake selectively reverted memory but not mood deficits displayed by HM, which are associated with an increased density and functional impact of hippocampal A(2A)R controlling synaptic glutamatergic function.NARSADDARPA [09-68-ESR-FP-010]Fundacao para a Ciencia e para a Tecnologia [PTDC/SAU-NEU/122254/2010, PEst-C/SAU/LA0001/2013-2014]QREN [CENTRO-07-ST24-FEDER-002006]program Egide-PessoaCAPES FCT (Ciencia sem Fronteiras
    corecore