54 research outputs found

    c-MET Protects Breast Cancer Cells from Apoptosis Induced by Sodium Butyrate

    Get PDF
    Sodium Butyrate (NaBu) is regarded as a potential reagent for cancer therapy. In this study, a specific breast cancer cell population that is resistant NaBu treatment was identified. These cells possess cancer stem cell characters, such as the capability of sphere formation in vitro and high tumor incident rate (85%) in mouse model. Forty percent of the NaBu resistant cells express the cancer stem cells marker, the CD133, whereas only 10% intact cells present the CD133 antigen. Furthermore, the endogenous expressing c-MET contributes to the survival of cancer stem cell population from the treatment of NaBu. The CD133+ group also presents a higher level of c-MET. A combination treatment of MET siRNA and NaBu efficiently prohibited the breast cancer progression, and the incident rate of the tumor decrease to 18%. This study may help to develop a new and alternative strategy for breast cancer therapy

    Sema3E/Plexin-D1 Mediated Epithelial-to-Mesenchymal Transition in Ovarian Endometrioid Cancer

    Get PDF
    Cancer cells often employ developmental cues for advantageous growth and metastasis. Here, we report that an axon guidance molecule, Sema3E, is highly expressed in human high-grade ovarian endometrioid carcinoma, but not low-grade or other ovarian epithelial tumors, and facilitates tumor progression. Unlike its known angiogenic activity, Sema3E acted through Plexin-D1 receptors to augment cell migratory ability and concomitant epithelial-to-mesenchymal transition (EMT). Sema3E-induced EMT in ovarian endometrioid cancer cells was dependent on nuclear localization of Snail1 through activation of phosphatidylinositol-3-kinase and ERK/MAPK. RNAi-mediated knockdown of Sema3E, Plexin-D1 or Snail1 in Sema3E-expressing tumor cells resulted in compromised cell motility, concurrent reversion of EMT and diminished nuclear localization of Snail1. By contrast, forced retention of Snail1 within the nucleus of Sema3E-negative tumor cells induced EMT and enhanced cell motility. These results show that in addition to the angiogenic effects of Sema3E on tumor vascular endothelium, an EMT strategy could be exploited by Sema3E/Plexin-D1 signaling in tumor cells to promote cellular invasion/migration

    Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small non-coding RNAs (sRNAs) are regarded as important regulators in prokaryotes and play essential roles in diverse cellular processes. <it>Xanthomonas oryzae </it>pathovar <it>oryzae </it>(<it>Xoo</it>) is an important plant pathogenic bacterium which causes serious bacterial blight of rice. However, little is known about the number, genomic distribution and biological functions of sRNAs in <it>Xoo</it>.</p> <p>Results</p> <p>Here, we performed a systematic screen to identify sRNAs in the <it>Xoo </it>strain PXO99. A total of 850 putative non-coding RNA sequences originated from intergenic and gene antisense regions were identified by cloning, of which 63 were also identified as sRNA candidates by computational prediction, thus were considered as <it>Xoo </it>sRNA candidates. Northern blot hybridization confirmed the size and expression of 6 sRNA candidates and other 2 cloned small RNA sequences, which were then added to the sRNA candidate list. We further examined the expression profiles of the eight sRNAs in an <it>hfq </it>deletion mutant and found that two of them showed drastically decreased expression levels, and another exhibited an Hfq-dependent transcript processing pattern. Deletion mutants were obtained for seven of the Northern confirmed sRNAs, but none of them exhibited obvious phenotypes. Comparison of the proteomic differences between three of the ΔsRNA mutants and the wild-type strain by two-dimensional gel electrophoresis (2-DE) analysis showed that these sRNAs are involved in multiple physiological and biochemical processes.</p> <p>Conclusions</p> <p>We experimentally verified eight sRNAs in a genome-wide screen and uncovered three Hfq-dependent sRNAs in <it>Xoo</it>. Proteomics analysis revealed <it>Xoo </it>sRNAs may take part in various metabolic processes. Taken together, this work represents the first comprehensive screen and functional analysis of sRNAs in rice pathogenic bacteria and facilitates future studies on sRNA-mediated regulatory networks in this important phytopathogen.</p

    Plexin-B2 Negatively Regulates Macrophage Motility, Rac, and Cdc42 Activation

    Get PDF
    Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2−/− macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2−/− macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing

    The semaphorin 4D-plexin-B signalling complex regulates dendritic and axonal complexity in developing neurons via diverse pathways.

    No full text
    Semaphorins and their receptors, plexins, have emerged as key regulators of various aspects of neuronal development. In contrast to the Plexin-A family, the cellular functions of Plexin-B family proteins in developing neurons are only poorly understood. An activation of Plexin-B1 via its ligand, semaphorin 4D (Sema4D), produces an acute collapse of axonal growth cones in hippocampal and retinal neurons over the early stages of neurite outgrowth. However, the functional role of Sema4D-Plexin-B interactions over subsequent stages of neurite development, differentiation and maturation has not been characterized. Here we addressed this question using morphogenetic assays and time-lapse imaging on developing rat hippocampal neurons as a model system. Interestingly, Sema4D treatment over several hours was observed to promote branching and complexity in hippocampal neurons via the activation of Plexin-B1. The activation of receptor tyrosine kinases and the Rho kinase following Sema4D treatment was found to control dendritic and axonal morphogenesis by differentially regulating branching and extension. Phosphoinositide-3-kinase, but not extracellular signal-regulated kinase 1/2, was observed to be important for the stimulatory effects of Sema4D on dendritic branching. Furthermore, we observed that the mammalian target of rapamycin is activated downstream of Plexin-B1 and contributes to Sema4D-induced effects on dendritic branching. In contrast, glycogen synthase kinase-3 beta, another effector of phosphoinositide-3-kinase signalling, was not involved. Thus, our results show that Sema4D-Plexin-B interactions modulate dendritic and axonal arborizations of developing neurons by co-ordinated and concerted activation of diverse signalling pathways
    corecore