47 research outputs found

    Epigenetic signatures relating to disease-associated genotypic burden in familial risk of bipolar disorder

    Full text link
    Environmental factors contribute to risk of bipolar disorder (BD), but how environmental factors impact the development of psychopathology within the context of elevated genetic risk is unknown. We herein sought to identify epigenetic signatures operating in the context of polygenic risk for BD in young people at high familial risk (HR) of BD. Peripheral blood-derived DNA was assayed using Illumina PsychArray, and Methylation-450K or -EPIC BeadChips. Polygenic risk scores (PRS) were calculated using summary statistics from recent genome-wide association studies for BD, major depressive disorder (MDD) and cross-disorder (meta-analysis of eight psychiatric disorders). Unrelated HR participants of European ancestry (n = 103) were stratified based on their BD-PRS score within the HR-population distribution, and the top two quintiles (High-BD-PRS; n = 41) compared against the bottom two quintiles (Low-BD-PRS; n = 41). The High-BD-PRS stratum also had higher mean cross-disorder-PRS and MDD-PRS (ANCOVA p = 0.035 and p = 0.024, respectively). We evaluated DNA methylation differences between High-BD-PRS and Low-BD-PRS strata using linear models. One differentially methylated probe (DMP) (cg00933603; p = 3.54 × 10−7) in VARS2, a mitochondrial aminoacyl-tRNA synthetase, remained significantly hypomethylated after multiple-testing correction. Overall, BD-PRS appeared to broadly impact epigenetic processes, with 1,183 genes mapped to nominal DMPs (p < 0.05); these displayed convergence with genes previously associated with BD, schizophrenia, chronotype, and risk taking. We tested poly-methylomic epigenetic profiles derived from nominal DMPs in two independent samples (n = 54 and n = 82, respectively), and conducted an exploratory evaluation of the effects of family environment, indexing cohesion and flexibility. This study highlights an important interplay between heritable risk and epigenetic factors, which warrant further exploration

    Seabird Modulations of Isotopic Nitrogen on Islands

    Get PDF
    The transport of nutrients by migratory animals across ecosystem boundaries can significantly enrich recipient food webs, thereby shaping the ecosystems’ structure and function. To illustrate the potential role of islands in enabling the transfer of matter across ecosystem boundaries to be gauged, we investigated the influence of seabirds on nitrogen input on islands. Basing our study on four widely differing islands in terms of their biogeography and ecological characteristics, sampled at different spatial and temporal intervals, we analyzed the nitrogen isotopic values of the main terrestrial ecosystem compartments (vascular plants, arthropods, lizards and rodents) and their relationship to seabird values. For each island, the isotopic values of the ecosystem were driven by those of seabirds, which ultimately corresponded to changes in their marine prey. First, terrestrial compartments sampled within seabird colonies were the most enriched in δ15N compared with those collected at various distances outside colonies. Second, isotopic values of the whole terrestrial ecosystems changed over time, reflecting the values of seabirds and their prey, showing a fast turnover throughout the ecosystems. Our results demonstrate that seabird-derived nutrients not only spread across the terrestrial ecosystems and trophic webs, but also modulate their isotopic values locally and temporally on these islands. The wealth of experimental possibilities in insular ecosystems justifies greater use of these model systems to further our understanding of the modalities of trans-boundary nutrient transfers

    Plague and Climate: Scales Matter

    Get PDF
    Plague is enzootic in wildlife populations of small mammals in central and eastern Asia, Africa, South and North America, and has been recognized recently as a reemerging threat to humans. Its causative agent Yersinia pestis relies on wild rodent hosts and flea vectors for its maintenance in nature. Climate influences all three components (i.e., bacteria, vectors, and hosts) of the plague system and is a likely factor to explain some of plague's variability from small and regional to large scales. Here, we review effects of climate variables on plague hosts and vectors from individual or population scales to studies on the whole plague system at a large scale. Upscaled versions of small-scale processes are often invoked to explain plague variability in time and space at larger scales, presumably because similar scale-independent mechanisms underlie these relationships. This linearity assumption is discussed in the light of recent research that suggests some of its limitations

    The “conscious pilot”—dendritic synchrony moves through the brain to mediate consciousness

    Get PDF
    Cognitive brain functions including sensory processing and control of behavior are understood as “neurocomputation” in axonal–dendritic synaptic networks of “integrate-and-fire” neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic–dendritic gap junctions, forming transient syncytia (“dendritic webs”) in input/integration layers oriented sideways to axonal–dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The “conscious pilot” is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation

    The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease

    Get PDF
    Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8x10(-4) (95%CI: [2.6; 11.0] x 10(-4)). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another

    Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks

    Get PDF
    We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.Qiang Li, Minyou Chen, Matjaz Perc, Azhar Iqbal, & Derek Abbot

    Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)

    Get PDF
    Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material

    The role of nuclear technologies in the diagnosis and control of livestock diseases—a review

    Full text link
    corecore