243 research outputs found

    Differential splicing using whole-transcript microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The latest generation of Affymetrix microarrays are designed to interrogate expression over the entire length of every locus, thus giving the opportunity to study alternative splicing genome-wide. The Exon 1.0 ST (sense target) platform, with versions for Human, Mouse and Rat, is designed primarily to probe every known or predicted exon. The smaller Gene 1.0 ST array is designed as an expression microarray but still interrogates expression with probes along the full length of each well-characterized transcript. We explore the possibility of using the Gene 1.0 ST platform to identify differential splicing events.</p> <p>Results</p> <p>We propose a strategy to score differential splicing by using the auxiliary information from fitting the statistical model, RMA (robust multichip analysis). RMA partitions the probe-level data into probe effects and expression levels, operating robustly so that if a small number of probes behave differently than the rest, they are downweighted in the fitting step. We argue that adjacent poorly fitting probes for a given sample can be evidence of <it>differential </it>splicing and have designed a statistic to search for this behaviour. Using a public tissue panel dataset, we show many examples of tissue-specific alternative splicing. Furthermore, we show that evidence for putative alternative splicing has a strong correspondence between the Gene 1.0 ST and Exon 1.0 ST platforms.</p> <p>Conclusion</p> <p>We propose a new approach, FIRMAGene, to search for differentially spliced genes using the Gene 1.0 ST platform. Such an analysis complements the search for differential expression. We validate the method by illustrating several known examples and we note some of the challenges in interpreting the probe-level data.</p> <p>Software implementing our methods is freely available as an <monospace>R</monospace> package.</p

    Signatures of TSPAN8 variants associated with human metabolic regulation and diseases

    Get PDF
    Here, with the example of common copy number variation (CNV) in the TSPAN8 gene, we present an important piece of work in the field of CNV detection, that is, CNV association with complex human traits such as 1H NMR metabolomic phenotypes and an example of functional characterization of CNVs among human induced pluripotent stem cells (HipSci). We report TSPAN8 exon 11 (ENSE00003720745) as a pleiotropic locus associated with metabolomic regulation and show that its biology is associated with several metabolic diseases such as type 2 diabetes (T2D) and cancer. Our results further demonstrate the power of multivariate association models over univariate methods and define metabolomic signatures for variants in TSPAN8

    Opportunistic visitors: long-term behavioural response of bull sharks to food provisioning in Fiji

    Get PDF
    Shark-based tourism that uses bait to reliably attract certain species to specific sites so that divers can view them is a growing industry globally, but remains a controversial issue. We evaluate multi-year (2004&ndash;2011) underwater visual (n = 48 individuals) and acoustic tracking data (n = 82 transmitters; array of up to 16 receivers) of bull sharks Carcharhinus leucas from a long-term shark feeding site at the Shark Reef Marine Reserve and reefs along the Beqa Channel on the southern coast of Viti Levu, Fiji. Individual C. leucas showed varying degrees of site fidelity. Determined from acoustic tagging, the majority of C. leucas had site fidelity indexes &gt;0.5 for the marine reserve (including the feeding site) and neighbouring reefs. However, during the time of the day (09:00&ndash;12:00) when feeding takes place, sharks mainly had site fidelity indexes &lt;0.5 for the feeding site, regardless of feeding or non-feeding days. Site fidelity indexes determined by direct diver observation of sharks at the feeding site were lower compared to such values determined by acoustic tagging. The overall pattern for C. leucas is that, if present in the area, they are attracted to the feeding site regardless of whether feeding or non-feeding days, but they remain for longer periods of time (consecutive hours) on feeding days. The overall diel patterns in movement are for C. leucas to use the area around the feeding site in the morning before spreading out over Shark Reef throughout the day and dispersing over the entire array at night. Both focal observation and acoustic monitoring show that C. leucas intermittently leave the area for a few consecutive days throughout the year, and for longer time periods (weeks to months) at the end of the calendar year before returning to the feeding site

    A method for identifying genetic heterogeneity within phenotypically defined disease subgroups.

    Get PDF
    Many common diseases show wide phenotypic variation. We present a statistical method for determining whether phenotypically defined subgroups of disease cases represent different genetic architectures, in which disease-associated variants have different effect sizes in two subgroups. Our method models the genome-wide distributions of genetic association statistics with mixture Gaussians. We apply a global test without requiring explicit identification of disease-associated variants, thus maximizing power in comparison to standard variant-by-variant subgroup analysis. Where evidence for genetic subgrouping is found, we present methods for post hoc identification of the contributing genetic variants. We demonstrate the method on a range of simulated and test data sets, for which expected results are already known. We investigate subgroups of individuals with type 1 diabetes (T1D) defined by autoantibody positivity, establishing evidence for differential genetic architecture with positivity for thyroid-peroxidase-specific antibody, driven generally by variants in known T1D-associated genomic regions.We acknowledge the help of the Diabetes and Inflammation Laboratory Data Service for access and quality control procedures on the data sets used in this study. The JDRF/Wellcome Trust Diabetes and Inflammation Laboratory is in receipt of a Wellcome Trust Strategic Award (107212; J.A.T.) and receives funding from the NIHR Cambridge Biomedical Research Centre. J.L. is funded by the NIHR Cambridge Biomedical Research Centre and is on the Wellcome Trust PhD program in Mathematical Genomics and Medicine at the University of Cambridge. C.W. is funded by the MRC (grant MC_UP_1302/5). We thank M. Simmonds, S. Gough, J. Franklyn, and O. Brand for sharing their AITD genetic association data set and all patients with AITD and control subjects for participating in this study. The AITD UK national collection was funded by the Wellcome Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry

    Get PDF
    BACKGROUND:Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator-prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). METHODOLOGY/PRINCIPAL FINDINGS:We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a "Pavlovian" predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. CONCLUSIONS/SIGNIFICANCE:Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Evaluating the Relationship between Spermatogenic Silencing of the X Chromosome and Evolution of the Y Chromosome in Chimpanzee and Human

    Get PDF
    Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI) results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals

    Residency patterns and migration dynamics of adult bull sharks (Carcharhinus leucas) on the east coast of southern Africa:

    Get PDF
    Bull sharks (Carcharhinus leucas) are globally distributed top predators that play an important ecological role within coastal marine communities. However, little is known about the spatial and temporal scales of their habitat use and associated ecological role. In this study, we employed passive acoustic telemetry to investigate the residency patterns and migration dynamics of 18 adult bull sharks (195–283 cm total length) tagged in southern Mozambique for a period of between 10 and 22 months. The majority of sharks (n = 16) exhibited temporally and spatially variable residency patterns interspersed with migration events. Ten individuals undertook coastal migrations that ranged between 433 and 709 km (mean  = 533 km) with eight of these sharks returning to the study site

    Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance

    Get PDF
    BACKGROUND: Concern over bio-terrorism has led to recognition that traditional public health surveillance for specific conditions is unlikely to provide timely indication of some disease outbreaks, either naturally occurring or induced by a bioweapon. In non-traditional surveillance, the use of health care resources are monitored in "near real" time for the first signs of an outbreak, such as increases in emergency department (ED) visits for respiratory, gastrointestinal or neurological chief complaints (CC). METHODS: We collected ED CCs from 2/1/94 – 5/31/02 as a training set. A first-order model was developed for each of seven CC categories by accounting for long-term, day-of-week, and seasonal effects. We assessed predictive performance on subsequent data from 6/1/02 – 5/31/03, compared CC counts to predictions and confidence limits, and identified anomalies (simulated and real). RESULTS: Each CC category exhibited significant day-of-week differences. For most categories, counts peaked on Monday. There were seasonal cycles in both respiratory and undifferentiated infection complaints and the season-to-season variability in peak date was summarized using a hierarchical model. For example, the average peak date for respiratory complaints was January 22, with a season-to-season standard deviation of 12 days. This season-to-season variation makes it challenging to predict respiratory CCs so we focused our effort and discussion on prediction performance for this difficult category. Total ED visits increased over the study period by 4%, but respiratory complaints decreased by roughly 20%, illustrating that long-term averages in the data set need not reflect future behavior in data subsets. CONCLUSION: We found that ED CCs provided timely indicators for outbreaks. Our approach led to successful identification of a respiratory outbreak one-to-two weeks in advance of reports from the state-wide sentinel flu surveillance and of a reported increase in positive laboratory test results
    • …
    corecore