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Abstract

Many common diseases show wide phenotypic variation. We present a statistical method
for determining whether phenotypically defined subgroups of disease cases represent differ-
ent genetic architectures, in which disease-associated variants have different effect sizes in
the two subgroups. Our method models the genome-wide distributions of genetic associa-
tion statistics with mixture Gaussians. We apply a global test without requiring explicit
identification of disease-associated variants, thus maximising power in comparison to a
standard variant by variant subgroup analysis. Where evidence for genetic subgrouping is

found, we present methods for post-hoc identification of the contributing genetic variants.



We demonstrate the method on a range of simulated and test datasets where expected
results are already known. We investigate subgroups of type 1 diabetes (T1D) cases de-
fined by autoantibody positivity, establishing evidence for differential genetic architecture
with thyroid peroxidase antibody positivity, driven generally by variants in known T1D

associated regions.

Introduction

Analysis of genetic data in human disease typically uses a binary disease model of cases and
controls. However, many common human diseases show extensive clinical and phenotypic
diversity which may represent multiple causative pathophysiological processes. Because
therapeutic approaches often target disease-causative pathways, understanding this phe-
notypic complexity is valuable for further development of treatment, and the progression
towards personalised medicine. Indeed, identification of patient subgroups characterised
by different clinical features can aid directed therapy [I] and accounting for phenotypic
substructures can improve ability to detect causative variants by refining phenotypes into
subgroups in which causative variants have larger effect sizes [2].

Such subgroups may arise from environmental effects, reflect population variation in
non-disease related anatomy or physiology, correspond to partitions of the population in
which disease heritability differs, or represent different causative pathological processes.
Our method tests whether there exist a subset of disease-associated SNPs which have
different effect sizes in case subgroups, determining whether heterogeneity corresponds to
differential genetic pathology.

Our test is for a stronger assertion than the question of whether subgroups of a disease
group exhibit any genetic differences at all, as these may be entirely disease-independent:

for example, although there will be systematic genetic differences between Asian and Euro-



pean patient cohorts with type 1 diabetes (T1D), these differences will not generally relate
to the pathogenesis of disease.

Rather than attempting to analyse SNPs individually for differences between subgroups,
a task for which GWAS are typically underpowered, we model allelic differences across all
SNPs using mixture multivariate normal models. This can give insight into the structure
of the genetic basis for disease. Given evidence that there exists some subset of SNPs that
both differentiate controls and cases and differentiate subgroups, we can then reassess test

statistics to search for single-SNP effects.

Results

Summary of proposed method

We jointly consider allelic differences between the combined case group and controls, and
allelic differences between case subgroups independent of controls. Specifically, we establish
whether the data support a hypothesis (H;) that a subset of SNPs associated with case-
control status have different underlying effect sizes (and hence underlying allele frequencies)
in case subgroups. This assumption has been used previously for genetic discovery [3].

H, encompasses several potential underlying mechanisms of heterogeneity. A set of
SNPs may be associated with one case subgroup but not the other; the same set of SNPs
may have different relative effect sizes in subgroups, or heritability may differ between
subgroups. These scenarios are discussed in supplementary note

Our overall protocol is to fit two bivariate Gaussian mixture models, corresponding to
null and alternative hypotheses, to summary statistics (Z scores) derived from SNP data.
We assume a group of controls and two non-intersecting case subgroups, and jointly consider

allelic differences between the combined case group and controls, and allelic differences



between case subgroups independent of controls (figure |1). Heterogeneity in cases can also
be characterised by a quantitative trait, rather than explicit subgroups.

For a given SNP we denote by w1, e, 12 and u. the population minor allele frequencies
for each of the two case subgroups, the whole case group and the control group respectively,
and Py, P, GWAS p-values for comparisons of allelic frequency between case subgroups and
between cases and controls, under the null hypotheses p; = po and p12 = u,. respectively
(or similarly for quantitative heterogeneity). We then derive absolute Z scores |Z;| and
|Z,| from these p-values (see figure[l)). We consider the values |Z4|, | Z,| as absolute values
of observations of random variables (Zg4, Z,) which are samples from a mixture of three
bivariate Gaussians. Further details are given in supplementary note

We consider each SNP to fall into one of three categories, with each category corre-

sponding to a different joint distribution of Zg, Z,:

1. SNPs which do not differentiate subgroups and are not associated with the phenotype

as a whole (e = u1 = p2)

2. SNPs which are associated with the phenotype as a whole but which are not differ-

entially associated with the subgroups (pe # pi2; 1 = p2 = H12)

3. SNPs which have different population allele frequencies in subgroups, and may or

may not be associated with the phenotype as a whole (1 # u2)

If the SNPs in category 3 are not associated with the disease as a whole (null hypothesis,
Hy), we expect Zg, Z, to be independent and the variance of Z, to be 1. If SNPs in category
3 are also associated with the disease as a whole (alternative hypothesis, Hj), the joint
distribution of (Z4, Z,) will have both marginal variances greater than 1, and Z,, Z; may
co-vary. Our test is therefore focussed on the form of the joint distribution of (Z4, Z,)

in category 3. Importantly, we allow that the correlation between Z; and Z, may be



simultaneously positive at some SNPs and negative at others. This allows for a subset of
SNPs to specifically alter risk of one subgroup, and another subset to alter risk for the
other subgroup. To accommodate this, we only consider absolute Z scores and model the
distribution of SNPs in category 3 with two mirror-image bivariate Gaussians.

Amongst SNPs with the same frequency in disease subgroups (categories 1 and 2), Z,
and Z; are independent and the expected standard deviation of Z; is 1. We therefore
model the overall joint distribution of (Z4, Z,) as a Gaussian mixture in which the pdf of

each observation (Zg, Z,) is given by
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where Ny (d,a) denotes the density of the bivariate normal pdf centered at () with co-
variance matrix X at (d,a). © is the vector of values (71,72, 7, 02,03,p). Under Hyp, we
have p = 0 and o3 = 1. The values (my, w2, m3) represent the proportion of SNPs in each
category, with Xm; = 1 (see table [I). Patterns of (Zy4, Z,) for different parameter values
are shown in supplementary table [I]

We use the product of values of the above pdf for a set of observed Z;, Z, as an
objective function (‘pseudo-likelihood’; PL) to estimate the values of parameters. This
is not a true likelihood as observations are dependent due to linkage disequilibrium (LD),
although because we minimise the degree of LD between SNPs using the LDAK method [4],

the PL is similar to a true likelihood.



Model Interpretation

m | Hy/H1 | Proportion of SNPs not associated with case/control
status and not associated with subgroup status
(category 1)

mo | Hy/H1 | Proportion of SNPs associated with case/control

status but not subgroup status (category 2)

73 | Hy/Hy, | Proportion of SNPs associated with subgroup status
(category 3)

T | Ho/H; | Standard deviation of observed Z; scores (effect sizes for
subgroup status) in category 3

o9 | Hy/Hy, | Standard deviation of observed Z, scores (effect sizes
for case/control status) in category 2

o3 | Hy only | Standard deviation of observed Z, scores (effect sizes
for case/control status) in category 3

p | Hy only | ‘Absolute covariance’ between Zy scores (effect sizes for
subgroup status) and Z, scores (effect sizes for
case/control status) in category 3

Table 1: Interpretation of parameter values in the fitted model. Parameters 7, o9 and o3
are dependent on sample sizes, but can be converted to sample-size independent forms (see
supplementary note, section (3.3)

Model fitting and significance testing

We fit parameters m, 7o, m3 (= 1 — 7 — m2), 02, 03, T and p under H; and Hy. Under Hy,
(p,3) = (0,1).

We then compare the fit of the two models using the log-ratio of PLs, giving an un-
adjusted pseudo-likelihood ratio (uWPLR). We subtract a term depending only on Z, to
minimise the influence of the Z, score distribution, and add a term log(mmem3) to ensure

the model is identifiable [5]. We term the resultant test statistic the pseudo-likelihood ratio



(PLR). The distribution of the PLR is minorised by a distribution of the form:

X7 prob =k

PLR|Hy ~ . (2)
vx3 prob=1-k

The value ~ arises from the weighting derived from the LDAK procedure causing a scale
change in the observed PLR. The mixing parameter s corresponds to the probability that
p = 0, (approximately %)

We estimate v and « by sampling random subgroups of the case group. Such subgroups
only cover the subspace of Hy with 7 = 1 (no systematic allelic differences between sub-
groups), causing the asymptotic approximation of PLR by equation [2 to be poor. We thus
estimate v and & from the distribution of a similar alternative test statistic, the cPLR (see
methods section and supplementary note, section , which is well-behaved even when
7 =~ 1 and which majorises the distribution of PLR.

A natural next step is to search for the specific variants contributing to the PLR. An
effective test statistic for testing subgroup differentiation for single SNPs is the Bayesian
conditional false discovery rate (cFDR) [0, [7] applied to Z; scores ‘conditioned’ on Z,
scores. However, this statistic alone cannot capture all the means by which the joint
distribution of (Z,, Z4) can deviate from Hy, and we also propose three other test statis-

tics, each with different advantages, and compare their performance (supplementary note,

section .

Power calculations, simulations, and validation of method

We tested our method by application to a range of datasets, using simulated and resampled
GWAS data. First, to confirm appropriate control of type 1 error rates across Hgy, we

simulated genotypes of case and control groups under Hy for a set of 5x 10° autosomal SNPs



in linkage equilibrium (supplementary note . Quantiles of the empirical PLR distribution
were smaller than those for the empirical cPLR distribution and the asymptotic mixture-x?,
indicating that the test is conservative when 7 > 1 (estimated type 1 error rate 0.048, 95%
CI 0.039-0.059) and when 7 &~ 1 (estimated type 1 error rate 0.033, 95% CI 0.022-0.045)
as expected; see figure 2l The distribution of cPLR closely approximated the asymptotic
mixture-x? distribution across all values of 7 (supplementary note, section .

We then established the suitability of the test when SNPs are in LD and when there
exist genetic differences between subgroups that are independent of disease status overall.
First, we used a dataset of controls and autoimmune thyroid disease (ATD) cases and
repeatedly choose subgroups such that several SNPs had large allelic differences between
subgroups. We found good FDR control at all cutoffs (supplementary note, figure
and the overall type 1 error rate at a = 0.05 was 0.041 (95% CI 0.034-0.050). Second, we
analysed a dataset of T1D cases with subgroups defined by geographical origin. Within the
UK, there is clear genetic diversity associated with region [9]. As expected, Z; scores for
geographic subgroups showed inflation compared to for random subgroups (supplementary
figure . None of the derived test statistics reached significance at a Bonferroni-corrected
p < 0.05 threshold (min. corrected p value > 0.8, supplementary figure [2)).

To examine the power of our method, we used published GWAS data from the Wellcome
Trust Case Control Consortium [I0] comprising 1994 cases of Type 1 diabetes (T1D), 1903
cases of rheumatoid arthritis (RA), 1922 cases of type 2 diabetes (T2D) and 2953 common
controls. We established that our test could differentiate between any pair of diseases,
considered as subgroups of a general disease case group (all < 1 x 1078, table .

T1D and RA have overlap in genetic basis [10} 11} [7], as well as non-overlapping asso-
ciated regions. T1D and T2D have less overlap [11] and T2D and RA less still. This was

reflected in the fitted values (table |2 figure . The fitted values parametrizing category



™ T 3 09 o3 T P p-val

TID/RA | H;i 0997 569 x10~% 2.06 x 1073 2.76 1.39 1.74 1.815] 3.2 x 10712
Hy 0997 6.26x107* 248x107% 271 - 167 -

T1D/T2D | H; 0.573 0.426 9.63 x 10~* 1.00 2.03 225 1.68 | 1.6 x 107
Hy 0.578 0.421 891 x 107 1.00 - 221 -

T2D/RA | H; 0.573 0.426 871 x10~% 1.00 223 1.75 1.69 | 5.1x107°
Hy 091 8.05x1074 0.0892 225 - 097 -

GD/HT | H; 0.506 0.487 0.007 112 290 1.65 261 [22x10° 7
Hy 0.493 0.079 0.428 .68 - 103 -

Table 2: Fitted parameter values for models of T1D/RA, T1D/T2D, T2D/RA, and
GD/HT. H; is the null hypothesis (under which o3 = 1, p = 0) that SNPs differenti-
ating the subgroups are not associated with the overall phenotype; H; is the alternative
(full model). p values for pseudo-likelihood ratio tests are also shown.

2 in the full model for TID/RA (72, 02) were consistent with a subset of SNPs associated
with case/control status (T1D+RA vs control) but not differentiating T1D/RA. By con-
trast, the parametrization of category 2 for T1D/T2D and T2D/RA had marginal variance
o9 approximately 1, suggesting that a subset of SNPs associated with case/control status
but not with ‘subgroup’ status did not exist in these cases. The rejection of Hy for the
comparisons entails the existence of a set of SNPs associated both with case/control and
subgroup status. The Hy model does not allow such a set of SNPs, forcing the parametri-
sation of Zy, Z, scores for such SNPs to be ‘squashed’ into a category shape permitted
under Hy, with one marginal variance being 1: either category 2 (as happens in T2D/RA
since mo|Hy ~ m3|Hy, o9|Hp ~ o3|H; in T2D/RA) or category 3 (as in T1D/T2D, where
m3|Hy =~ m3|Hy, 7|Hy ~ 7|Hy).

To determine the power of our test more generally, we showed that power depends on
the number of SNPs in category 3 and on the underlying parameters of the true model,
depending on the number of samples through the fitted model parameters (Supplementary

Note [3.3). We therefore estimated the power of the test for varying numbers of SNPs in



category 3 and for varying values of the parameters o3, 7, and p. (Figure 4} Supplementary
Figure . As expected, power increases with an increasing number of SNPs in category
3, reflecting the proportion of SNPs which differentiate case subgroups and are associated
with the phenotype as a whole. Power also increases with increasing 7, o3, and absolute
correlation (p/(o37)) as high values enable better distinction of SNPs in the second and
third categories.

We explored the dependence of power on sample size by sub-sampling the WTCCC
data for RA and T1D (figure [4]) and compared the power of the PLR with the power to
find any single SNP which differentiated the two diseases in several ways (see figure legend).
Although the power of the PLR-based test was limited at reduced sample sizes, it remained
consistently higher than the power to detect any single SNP which differentiated the two
diseases. We then repeated the analysis removing the known T1D- and RA- associated SNP
rs17696736. The power to detect a SNP with significant Zy score (Bonferroni-corrected)
amongst SNPs with GW-significant Z, score dropped dramatically, though the power of
PLR was only slightly reduced. This illustrated the robustness of the PLR test to inclusion
or removal of single SNPs with large effect sizes, a property not shared by single-SNP
approaches.

Estimating power requires an estimate of the underlying values of several parameters:
the expected total number of SNPs in the pruned dataset with different population MAF
in case subgroups, and the distribution of odds-ratios such SNPs between subgroups and
between cases/controls. With sparse genome-wide cover, such as that in the WTCCC
study, > 1250 cases per subgroup are necessary for 90% power (discounting MHC region).
If SNPs with greater coverage for the disease of interest are used (such as the ImmunoChip
for autoimmune diseases) values of 73, o3 and 7 are correspondingly higher, and around

500-700 cases per subgroup may be sufficient.
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Application to autoimmune thyroid disease and type 1 diabetes

Autoimmune thyroid disease (ATD) takes two major forms: Graves’ disease (GD; hyper-
thyroidism) and Hashimoto’s Thyroiditis (HT; hypothyroidism). Differential genetics of
these conditions have been investigated. Detection of individual variants with different
effect sizes in GD and HT is limited by sample size (particularly HT); however, the TSHR
region shows evidence of differential effect [I2]. T1D is relatively clinically homogenous
with no major recognised subtypes, although heterogeneity arises between patients in levels
of disease-associated autoantibodies, and disease course differs with age at diagnosis [3].
We analysed both of these diseases.

For ATD, we were able to confidently detect evidence for differential genetic bases for
GD and HT (p = 2.2x107%9). Fitted values are shown in table The distribution of cPLR
statistics from random subgroups agreed well with the proposed mixture x? (supplementary
figure .

For T1D, we considered four subgroupings defined by plasma levels of the T1D-associated
autoantibodies thyroid peroxidase antibody (TPO-Ab, n=5780), insulinoma-associated
antigen 2 antibody (IA2-Ab, n=3197), glutamate decarboxylase antibody (GAD-Ab, n=3208)
and gastric parietal cell antibodies (PCA-Ab, n=2240). A previous GWAS study on au-
toantibody positivity in T1D identified only two non-MHC loci at genome-wide significance:
1q23/FCRL3 with TA2-Ab and 9934/ ABO with PCA-Ab [3].

We tested each of the subgroupings retaining and excluding the MHC region. Fitted
values for models with and without MHC are shown in supplementary table [2, and plots
of Z, and Z; scores are shown in supplementary figure Retaining the MHC region,
we were able to confidently reject Hy for subgroupings based on TPO-Ab, TA-2Ab and
GAD-Ab (all p-values < 1.0 x 10720). Although there was evidence that SNPs in the

dataset were associated with PCA-Ab level (7 ~ 2.5, null model), the improvement in fit

11



in the full model was not significant, and we conclude that such SNPs determining PCA-Ab
status are not in general T1D-associated. This can be seen by in the plot of Z, against
Zq4 (supplementary figure [5) where SNPs with high Z; values do not have higher than
expected Z, values.

With MHC removed, the subgrouping on TPO-Ab was significantly better-fit by the full
model (p = 1.5 x 10~%). There was weaker evidence to reject Hy for GAD-Ab (p = 0.002)
and IA2-Ab (p = 0.008) (Bonferroni-corrected threshold at o < 0.05: 0.006). Fitted values
of 7 in both the full and null models for GAD-Ab were ~ 1, indicating absence of evidence
for a category of non-MHC T1D-associated SNPs additionally associated with GAD-Ab
positivity. Collectively, this indicates that differential genetic basis for T1D with GAD-Ab
and TA2-Ab positivity is driven principally by the MHC region, and although PCA-Ab
status is partially genetically determined, the set of causative variants is independent of
T1D causative pathways.

The variation in genetic architecture of T1D with age is not fully understood, but pre-
vious studies have suggested larger observed effects at known loci in patients diagnosed at
a younger age [13] [14, [15] [16]. We investigated whether these differences were indicative of
widespread differences in variant effect sizes with age-at-diagnosis, possibly due to differen-
tial heritability (see supplementary note . We applied the method to T1D dataset with
Z4 defined by age at diagnosis (quantitative trait). Fitted values are shown in supplemen-
tary table [3|and Z, and Z; scores in supplementary figure [l The hypothesis Hy could be
rejected confidently when retaining or removing the MHC region (p values < 1.0 x 102°
and 0.007 respectively). Signed Z; and Z, scores for age at diagnosis showed a visible
negative correlation (p = 0.002) amongst Z; and Z, scores for disease-associated SNPs (rg
method 2, figure . This is consistent with a higher genetic liability with lower age at

diagnosis.
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Assessment of individual SNPs

Many SNPs which discriminated subgroups were in known disease-associated regions (Sup-
plementary Tables and @) In several cases, our method identified disease-associated
SNPs which have reached genome-wide significance in subsequent larger studies but for
which the Z, score in the WTCCC study was not near significance. For example, the SNP
rs3811019, in the PTPN22 region, was identified as likely to discriminate T1D and T2D
(p = 3.046 x 10~5; supplementary table, despite a p value of 3 x 10~ for joint T1D/T2D
association.

For GD and HT, SNPs near the known ATD-associated loci PTPN22 (rs7554023),
CTLA4 (rsb8716662), and CEP128 (rs55957493) were identified as likely to be contributing
to the difference (see supplementary table . The SNPs rs34244025 and rs34775390 are
not known to be ATD-associated, but are in known loci for inflammatory bowel disease
and ankylosing spondylitis, and our data suggest they may differentiate GD and HT (FDR
0.003).

We searched for non-MHC SNPs with differential effect sizes with TPOA positivity
in T1D, the subgrouping of T1D for which we could most confidently reject Hy. Pre-
vious work [3] identified several loci potentially associated with TPO-Ab positivity by
restricting attention to known T1D loci, enabling use of a larger dataset than was avail-
able to us. We list the top ten SNPs for each summary statistic for TPO-Ab positivity in
supplementary table [8] Subgroup-differentiating SNPs included several near known T1D
loci: CTLA4 (rs7596727), BACH2 (rs11755527), RASGRP1 (rs16967120) and UBASH3A
(rs2839511) [I7]. These loci agreed with those found by Plagnol et al [3], but our analysis
used only available genotype data, without external information on confirmed T1D loci.
We were not able to replicate the same p-values due to reduced sample numbers.

Finally, we analysed non-MHC SNPs with varying effect sizes with age at diagnosis

13



in T1D (supplementary table [9). This implicated SNPs in or near CTLA4 (rs2352551),
IL2RA (rs706781), and IKZF'3 (rs11078927).

Discussion

The problem we address is part of a wider aim of adapting GWAS to complex disease
phenotypes. As the body of GWAS data grows the analysis of between-disease similarity
and within-disease heterogeneity has led to substantial insight into shared and distinct
disease pathology [0, [7, 2, 20, 2I]. We seek in this paper to use genomic data to infer
whether such disease subtypes exist. Our problem is related to the question of whether two
different diseases share any genetic basis [I8] but differs in that the implicit null hypothesis
relates to genetic homogeneity between subgroups rather than genetic independence of
separate diseases.

Our test strictly assesses whether a set of SNPs have different effect sizes in case sub-
groups. We interpret this as ‘differential causative pathology’, which encompasses several
disease mechanisms, discussed in supplementary note In some cases, if subgroups are
defined on the basis of the presence or absence of a known disease risk factor, the heri-
tability of the disease will differ between subgroups, with corresponding changes in variant
effect sizes.

We use ‘absolute covariance’ p preferentially (see supplementary table |1)) because we
expect that Z, and Z; will frequently co-vary positively and negatively at different SNPs
in the same analysis; for instance, if some variants are deleterious only for subgroup 1 and
others only for subgroup 2. A potential advantage of our symmetric model is the potential
to generate Z; scores from ANOVA-style tests for genetic homogeneity between three or
more subgroups, in which case reconstructed Z scores would be directionless.

Aetiologically and genetically heterogeneous subgroups within a case group correspond
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to substructures in the genotype matrix. Information about such substructures is lost
in a standard GWAS, which only uses the column-sums (MAFSs) of the matrix (linear-
order information). Data-driven selection of appropriate case subgroups and corresponding
analyses of these subgroups can use more of the remaining quadratic-order information the
matrix contains. Indeed a ‘two-dimensional’ GWAS approach (using Z, and Z;) instead of
a standard GWAS (using only Z,) may improve SNP discovery, as we found for PTPN22
in RA/T2D. However, this can only be the case if the subgroups correspond to different
variant effect sizes; for other subgroupings, a two-dimensional GWAS will only add noise.

While it seems appealing to use this method to search for some ‘optimal’ partition of
patients, we prefer to focus on testing subgroupings derived from independent clinical or
phenotypic data. Firstly, it is difficult to characterise subgroupings as ‘better’ or ‘worse’,
and no one parameter can parametrise the degree to which two subgroups differ; parameters
ms, 7, and p all contribute, and attempts to test the hypothesis using a single measure such
as genetic correlation have serious shortcomings (supplementary note, . Secondly, even
if subgroups could meaningfully be ranked, the search space of potential subgroupings of
a case group is prohibitively large (2% for N cases), making exhaustive searches difficult.

We demonstrated that effect sizes of T1D-causative SNPs differ with age at disease
diagnosis. The strong negative correlation observed (figure [5) was consistent with an
increased total genetic liability in samples with earlier age of diagnosis, a finding supported
by candidate gene studies [14} 15l [16] and epidemiological data [I3]. Such a pattern arises
naturally from a liability threshold model where total liability depends additively on both
genetic effects and environmental influences which accumulate with age (supplementary
note 1)).

Our method necessarily dichotomises the multitude of mechanisms of heterogeneity,

although there are many diverse forms (supplementary table |1} supplementary note [1)).
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There is potential to further dissect the mechanisms of disease heterogeneity by incorpo-
rating estimations of genetic correlation [I8] or assessing evidence for liability threshold
models [22]. Similar mixture-Gaussian approaches may also be adaptable to this purpose,
by assessing other families of effect size distributions.

Our method adds to the current body of knowledge by extracting additional information
from a disease dataset over a standard GWAS analysis, and determines if further analysis
of disease pathogenesis in subgroups is justified. Our approach is analogous to the intuitive
method of searching for between-subgroup differences in SNPs with known disease asso-
ciations [3] but does not restrict attention to strong disease associations, enabling use of
information from disease-associated SNPs which do not reach significance. Our parametri-
sation of effect size distributions allows insight into the structure of the genetic basis of the
disease and potential subtypes, improving understanding of genotype-phenotype relation-

ships.

Methods

Ethics Statement

This paper re-analyses previously published datasets. All patient data were handled in

accordance with the policies and procedures of the participating organisations.

Joint distribution of variables Z,, Z;

We assume that SNPs may be divided into three categories, as described in the results
section (figure . Under these assumptions, Z, and Z; scores have the joint pdf given by
equation 1| We define © is the vector of values (71, w2, 73, T, 02, 03, p). Z scores Z, and Z4

are reconstructed from GWAS p-values for SNP associations. In practice, since our model
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is symmetric, we only require absolute Z scores, without considering effect direction.
For sample sizes n1, no and 97.5% odds-ratio quantile a, the expected observed standard

deviation of Z scores (that is, o9, 03, and 7) is given by

log(a)?nynsg

E{SD(Z)} = \/1 + Ton ¥

(supplementary note, section [3.3]).

Definition and distribution of PLR statistics

For a set of observed Z scores (Z,, Z;) we define the joint unadjusted pseudo-likelihood

PL4,(Z|O) as

l0g{PLaa(Z0,Za10)} = Y. wiPDFy, 5,062y, Z") + Clog(mimams)  (4)
Zy)ezdazéi>62a
where the term C'log(mimams) is included to ensure identifiability of the model [5] and
weights w; are included to adjust for LD (see below).

We now set

01 = argmazgc, PLaa(Za, Zal0)

0o = argmazeers, PLaa(Zd, Zalf)

P%(Z\(ﬁ))

wPLR(Z) = log <A (5)

PLda(Z|9 )

recalling that Hy is the subspace of the parameter space H; satisfying o3 = 1 and p = 0.

If data observations are independent, uPLR reduces to a likelihood ratio. Under Hy,
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the asymptotic distribution of uPLR is then

11 p=1/2
uPLR ~ 5 (6)

X3 p=1/2

according to Wilk’s theorem extended to the case where the null value of a parameter lies
on the boundary of H; (since p = 0 under Hp) [23].

The empirical distribution of uPLR may substantially majorise the asymptotic distri-
bution when 7 = 1. In the full model, the marginal distribution of Z, has more degrees of
freedom (four; 71, 2, 09, 03) than it does under the null model (two; ma, 09; as o3 = 1).
This can mean that certain distributions of Z, can drive high values of uP LR independent
of the values of Z; (supplementary note [3), which is unwanted as the values Z, reflect
only case/control association and carry no information about case subgroups. If observed
uPLRs from random subgroups (for which 7 = 1 by definition) are used to approximate
the null uPLR distribution, this effect would lead to serious loss of power when 7 >> 1.

This effect can be managed by subtracting a correcting factor based on the pseudo-

likelihood of Z, alone, which reflects the contribution of Z, values to the uPLR. We define

PLo(Za)®) = ] (miNoa(Z8)) + maNo o3 (Z8) + msNo o3 (Z7) ) (7)
zVez,

that is, the marginal likelihood of Z,. Given é\l, 9/6 as defined above, we define

f(Zy) = min (logPLa(Zawl) 0)

PLo(Z4|60)

We now define the PLR as
PLR =uPLR — f(Z,) (9)
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The action of f(Z,) leads to the asymptotic distribution of PLR slightly minorising the
asymptotic mixture-y? distribution of uPLR, to differential degrees dependent on the value
of 7 (see supplementary note |[3).

We define the similar test statistic cPLR:

PLda(Zm Zd|9)
PLy(Za|0)

cPL(Z4|Z4,0) =

HA{ = argmazec, cPL(Z4|Z,,0)
HAS = argmazecH, cPL(Z4|Z,,0)

cPL(Z4|Za,6¢)
cPL(Z4| Za, 05)

c¢PLR =log ( (10)

noting that the expression W can be considered as a likelihood conditioned on

the observed values of Z,. Now

PLR — log (PLda(Zd,Za\91)> " log (PLa(Za\Gl))

PLaa(Z4, Za)00) PLq(Z4|00)

cPL(Z4|Za,01)
= log =
cPL(Zd|Za, 90)

(11)

The empirical distribution of ¢cPLR for random subgroups majorises the empirical distri-
bution of PLR (supplementary note . Furthermore, the approximation of the empirical
distribution of cPLR by its asymptotic distribution is good, across all values of 7; that is,
across the whole null hypothesis space.

Our approach is to compare the PLR of a test subgroup to the cPLR of random sub-
groups, which constitutes a slightly conservative test under the null hypothesis (see sup-

plementary note (3)).
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Allowance for linkage disequilibrium

The asymptotic approximation of the pseudo likelihood-ratio distribution breaks down
when values of Z,, Z; are correlated due to LD. One way to overcome this is to ‘prune’
SNPs by hiererarchical clustering until only those with negligible correlation remain. A
disadvantage with this approach is that it is difficult to control which SNPs are retained in
an unbiased way without risking removal of SNPs which contribute greatly to the difference
between subgroups.

We opted to use the LDAK algorithm [4], which assigns weights to SNPs approximately
corresponding to their ‘unique’ contribution. Denoting by p;; the correlation between SNPs

i, j, and d(i, j) their chromosomal distance, the weights w; are computed so that

w; + ijplzje—Ad(i,j) (12)
i#j

is close to constant for all ¢, and w; > 0 for all ¢. The motivation for this approach is that
> pgj represents the replication of the signal of SNP ¢ from all other SNPs.
7 This approach has the advantage that if n SNPs are in perfect LD, and not in LD
with any other SNPs, each will be weighted 1/n, reducing the overall contribution to the
likelihood to that of one SNP. In practice, the linear programming approach results in
many SNP weights being 0. Using the LDAK algorithm therefore allows more SNPs to be
retained and contribute to the model than would be retained in a pruning approach.

A second advantage of LDAK is that it homogenises the contribution of each genome
region to the overall pseudo-likelihood. Many modern microarrays fine-map areas of the
genome known or suspected to be associated with traits of interest [24] which could theo-

retically lead to peaks in the distribution of SNP effect sizes, disrupting the assumption of

normality. LD pruning and LDAK both reduce this effect by homogenising the number of
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tags in each genomic region.

We adapted the pseudo-likelihood function to the weights by multiplying the contribu-
tion of each SNP to the log-likelihood by its weight (equation ), essentially counting the
ith SNP w; times over. Adjusting using LDAK was effective in enabling the distributions

of PLR to be well-approximated by mixture-x? distributions of the form [2| (supplementary
plots [, [} 19).
E-M algorithm to estimate model parameters

We use an expectation-maximisation algorithm [25] 26] to fit maximum-PL parameters.
Given an initial estimate of parameters ©g = (7,79, 7%, 09,09, p°) we iterate three main

steps:

1. Define for SNP s with Z scores ZC(;),Z((IS)

Cés) = Pr(s € category ¢|©;)

i (8) ()
N1 oy(289), Z§ _
N o) Za Za) (9=1)
W JmN (2, 257 (g=2)
(0h2)
Ve g Y ED N g ) @DED ] =)
\ Pt (a%)? —p' (o%)?
(13)
2. For g € (1,2,3) and LDAK weight ws for SNP s set
1 LG

g Zws
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3. Set

i+1 bl il il i+1 i+l
(7" oy oy p' ) = arg MaX(r 4, gy ) PL(Zd, Zalm T Ty, T 00,08, p)  (15)

Step 3 is complicated by the lack of closed form expression for the maximum likelihood
estimator of p (because of the symmetric two-Gaussian distribution of category 3), requiring
a bisection method for computation. The algorithm is continued until |PLR(Zy4, Z,|©;) —
PLR(Z4,Z4|0;-1)| < € we use e = 1 x 107°.

The algorithm can converge to local rather than global minima of the likelihood. We
overcome this by initially computing the pseudo-likelihood of the data at 1000 points
throughout the parameter space, retaining the top 100, and dividing these into 5 maximally-
separated clusters. The full algorithm is then run on the best (highest-PL) point in each
cluster

An appropriate choice of ©g can speed up the algorithm considerably; for simulations,
we begin the model at previous maximum-PL estimates of parameters for earlier simula-
tions.

Maximum-cPL estimations of parameters were made using generic numerical optimisa-
tion with the optim function in R. Prior to applying the algorithm, parameters mo and oo

are estimated as maximum-PL estimators of the objective function
9(Zalma,02) = > wilog{(1 = m3) No1(Z") + waNp 22} (16)

where w; is the weight for SNP i (see supplementary note [3| for rationale). The conditional

pseudo-likelihood was maximised over the remaining parameters.

22



The algorithm and other processing functions are implemented in an R package available

at https://github.com/jamesliley/subtest

Properties and assumptions of the PLR test

Our assumption that (Z,, Z;) follows a mixture Gaussian is generally reasonable for com-
plex phenotypes with a large number of associated variants [8] and our adjustment for
the distribution of Z, (essentially conditioning on observed Z,) reduces reliance on this
assumption. If subgroup prevalence is unequal between the study group and population,
our method can still be used with adaptation (supplementary note, section .

Our test is robust to confounders arising from differential sampling to the same extent
as conventional GWAS. For example, if subgroups were defined based on population struc-
ture, and population structure also varied between the case and control group, SNPs which
differed by ancestry would also appear associated with the disease, leading to a loss of con-
trol of type-1 error rate. However, the same study design would also lead to identification
of spurious association of ancestry-associated SNPs with the phenotype in a conventional
GWAS analysis. As for GWAS; this effect can be alleviated by including the confounding

trait as a covariate when computing p-values (Supplementary Note .

Prioritisation of single SNPs

An important secondary problem to testing Hy is the determination of which SNPs are
likely to be associated with disease heterogeneity. Ideally, we seek a way to test the
association of a SNP with subgroup status (ie, Z4), which gives greater priority to SNPs
potentially associated with case/control status (ie, high Z,).

An effective test statistic meeting these requirements is the Bayesian conditional false

discovery rate (cFDR) [6]. It tests against the null hypothesis H| that the population
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minor allele frequencies of the SNP in both case subgroups are equal (ie, that the SNP
does not differentiate subgroups), but responds to association with case/control status in
a natural way by relaxing the effective significance threshold on |Z;|. This relaxation of
threshold only occurs if there is systematic evidence that high |Z;| scores and high |Z,|
scores typically co-occur. The test statistic is direction-independent.

Given a set of observed Z, and Z,; values Z,gi), Zc(li)7 with corresponding two-sided p

values pui, pgi, the cFDR for SNP j is defined as

‘{i : Pai < Paj N Ddi Spde
{i : pai < paj}|

X4 = pgj

~ Pr(Hy| Py < paj, Pa < pgj)

The value gives the false-discovery rate for SNPs whose p-values fall in the region [0, pg;] x
[0, paj]; this can be converted into a false-discovery rate amongst all SNPs for whom X4
passes some threshold [7].

We discuss three other single-SNP test statistics in supplementary note [5.1] which test
against different null hypotheses. If the hypothesis H is to be tested, then we consider
the cFDR the best of these.

Contour plots of the test statistics for several datasets are shown in supplementary

figures and [9]

Genetic correlation testing

Given the correlation between Z; and Z, in the age-at-diagnosis analysis, methods to
estimate narrow-sense genetic correlation (r,) [18,19] may be adaptable to the subgrouping
question by estimating r, across a set of SNPs between case/control traits of interest, with

the potential advantage of characterising heterogeneity using a single widely-interpretable
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metric. This may be between Z scores derived from comparing the control group to each
case subgroup, testing under the null hypothesis r, = 1 (method 1); or between the familiar
Z, and Zg, under the null hypothesis 7, = 0 (method 2).

We explored these methods in supplementary note [ We show that method 1 leads
to systematically high false positive rates, as 7, is also reduced from 1 in subgroupings
that are independent of the overall disease process (e.g. hair colour in T2D). We show
that method 2 is considerably less powerful than our method because it tests a narrower
definition of H; which does not take account of the marginal variances of the distribution
of Z4, Z, in category 3, and requires that correlation between Z; and Z, be always positive
or always negative, in contrast to our symmetric model (Figure . Indeed, parameter p
estimates an analogue of r, accounting for simultaneous correlation and anticorrelation.

Methods to compute 7, were not explicitly proposed as a method for subgroup test-
ing, and our analysis does not indicate any general shortcomings. However, comparison
with r, based approaches places our method in the context of established methodology,
demonstrating the necessity of considering both variance parameters (7, o3) and covariance

parameters (p) in testing a subgrouping of interest.

Description of GWAS datasets

ATD samples were genotyped on the ImmunoChip [24] a custom array targeting putative
autoimmune-associated regions. Data were collected for GWAS-like analyses of dense SNP
data [12]. The dataset comprised 2282 cases of Graves’ disease, 451 cases of Hashimoto’s
thyroiditis, and 9365 controls.

T1D samples were genotyped on either the Illumina 550K or Affymetrix 500K plat-
forms, gathered for a GWAS on T1D [17]. We imputed between platforms in the same way

as the original GWAS. The dataset comprised genotypes from 5908 T1D cases and 8825
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controls, of which all had measured values of TPO-Ab, 3197 had measured TA2-Ab, 3208
had measured GAD-ADb, and 2240 had measured PCA-Ab. Comparisons for each autoan-
tibody were made between cases positive for that autoantibody, and cases not positive for
it. We did not attempt to perform comparisons of individuals positive for different au-
toantibodies (for instance, TPO-Ab positive vs IA2-Ab positive) because many individuals
were positive for both.

To generate summary statistics corresponding to geographic subgroups, we considered
the subgroup of cases from each of twelve regions and each pair of regions against all other
cases (78 subgroupings in total). To maximise sample sizes, we considered T1D cases as

‘controls’ and split the control group into subgroups.

Quality control

Particular care had to be taken with quality control, as Z-scores had to be relatively reliable
for all SNPs assessed, rather than just those putatively reaching genome-wide significance..
For the T1D/T2D/RA comparison, which we re-used from the WTCCC, a critical part of
the original quality control procedure was visual analysis of cluster plots for SNPs reaching
significance, and systematic quality control measures based on differential call rates and
deviance from Hardy-Weinberg equilibrium (HWE) were correspondingly loose [10]. Given
that we were not searching for individual SNPs, this was clearly not appropriate for our
method.

We retained the original call rate (CR) and MAF thresholds (MAF > 1%, CR >
95% if MAF > 5%, CR > 99% if MAF <5%) but employed a stricter control on Hardy-
Weinberg equilibrium, requiring p > 1 x 107> for deviation from HWE in controls. We
also required that deviance from HWE in cases satisfied p > 1.91 x 10~7, corresponding to

|z| < 5. The looser threshold for HWE in cases was chosen because deviance from HWE
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can arise due to true SNP effects [27]. We also required that call rate difference not be
significant (p > 1 x 107%) between any two groups, included case-case and case-control
differences. Geographic data was collected by the WTCCC and consisted of assignment
of samples to one of twelve geographic regions (Scotland, Northern, Northwestern, East
and West Ridings, North Midlands, Midlands, Wales, Eastern, Southern, Southeastern,
and London [10]). In analysing differences between autoimmune diseases, we stratified by
geographic location; when assessing subgroups based on geographic location, we did not.
For the ATD and T1D data, we used identical quality control procedures to those
employed in the original paper [12] [I7]. We applied genomic control [28] to computation
of Z, and Z; scores except for our analysis of ATD (following the original authors [12])
and our geographic analyses (as discussed above). In all analyses except where otherwise

indicated we removed the MHC region with a wide margin (= 5Mb either side).
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Figure 1: Overview of three-categories model. Z; and Z, are Z scores derived from GWAS
p-values for allelic differences between case subgroups (1 vs 2), and between cases and
controls (142 vs C) respectively (left). Within each category of SNPs, the joint distribution
of (Z4, Z,) has a different characteristic form. In category 1, Z scores have a unit normal
distribution; in category 2, the marginal variance of Z, can vary. The distribution of
SNPs in category 3 depends on the main hypothesis. Under Hy (that all disease-associated
SNPs have the same effect size in both subgroups), only the marginal variance of Z; may
vary; under H; (that subgroups correspond to differential effect sizes for disease-associated
SNPs), any covariance matrix is allowed. The overall SNP distribution is then a mixture
of Gaussians resembling one of the rightmost panels, but with SNP category membership
unobserved. Visually, our test determines whether the observed overall Z;, Z, distribution
more closely resembles the bottom rightmost panel than the top.

29



14

12

o Conditional, T=1 £
— Adjusted, t=1 g a
o Adjusted, t>1

10

2PLR / 2cPLR

| : | | |
0 5 10 15

Quantile in mixture

Figure 2: QQ plot from simulations demonstrating type 1 error rate control of PLR test.
PLR values for test subgroups under Hy with either 7 = 1 (random subgroups; grey)
or 7 > 1 (genetic difference between subgroups, but independent of main phenotype;
blue) with ¢cPLR values for random subgroups (black) and against proposed asymptotic
distribution under simulation (3 (X3 + x3); solid red line; 99% confidence limits dashed red
line). The distribution of ¢cPLR for random subgroups majorises the distribution of PLR,
meaning the PLR-based test is conservative. Further details are shown in supplementary
note, section @
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Figure 3: Observed absolute Z, and Z; for T1ID/RA. Colourings correspond to posterior
probability of category membership under full model (see triangle): grey - category 1, blue

- category 2, red -category 3. Contours of the component Gaussians in the fitted full model
are shown by dotted lines.
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Figure 4: Power of PLR to reject Hy (genetic homogeneity between subgroups) depends on
the number of SNPs in category 3 and the underlying values of model parameters o9, o3, T,
p. Dependence on number of case/control samples arises through the magnitudes of o3 and
7 (supplementary note, section. Leftmost figure shows power estimates for various val-
ues of 13, 03, 7, p. Value N is the approximate number of SNPs in category 3, (x 73). Each
simulation was on 5 x 10% simulated autosomal SNPs in linkage equilibrium. Value p/(o37)
is the absolute correlation between Z; and Z, in category 3. Also see supplementary fig-
ure 3] Rightmost figure shows power of PLR to detect differences in genetic basis of T1D
and RA subgroups of a combined autoimmune dataset, downsampling to varying numbers
of cases (X axis). PLR is compared with: power to find > 1 SNP with Z; score reaching
genome-wide significance (GWS, blue; p < 5 x 10~ 8) or Bonferroni-corrected significance
(BCS, green; p < 0.057(total # of SNPs)); and power to detect any SNP with Za score
reaching genome-wide significance and Zd score reaching Bonferroni-corrected significance
(sub-BCS, grey; p0.057(total # of SNPs with Za reaching GWS)). Error bars show 95%
CIs. Circles/solid lines for each colour show power for all SNPs, triangles/dashed lines for
all SNPs except rs17696736. Power for sub-BCS drops dramatically but power for PLR is
not markedly affected, indicating relative robustness of PLR to single-SNP effects.
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Figure 5: Z, and Z; scores for age at diagnosis in T1D, excluding MHC region. Colour
corresponds to posterior probability of category 2 membership in null model (since cat-
egories in full model are assigned on the basis of correlation), with black representing a
high probability. Z; and Z, are negatively correlated (p = 8.7 x 10~° with MHC included,
p = 0.002 with MHC removed) after accounting for LD using LDAK weights, and weight-
ing by posterior probability of category 2 membership in the null model, to prioritise SNPs
further from the origin

33



References

1]

Li L, Cheng WY, Glicksberg BS, Gottesman O, Tamler R, et al. (2015) Identification
of type 2 diabetes subgroups through topological analysis of patient similarity. Science

translational medicine 7: 311ral74-311ral74.

Morris AP, Lindgren CM, Zeggini E, Timpson NJ, Frayling TM, et al. (2009) A
powerful approach to sub-phenotype analysis in population-based genetic association

studies. Genetic Epidemiology 34: 335-343.

Plagnol V, Howson JMM, Smyth DJ, Walker N, Hafler JP, et al. (2011) Genome-
wide association analysis of autoantibody positivity in type 1 diabetes cases. PLOS

Genetics 7.

Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation

from genome-wide SNPs. American Journal of Human Genetics 91: 1011-1021.

Chen H, Chen J, Kalbfleisch JD (2001) A modified likelihood ratio test for homo-
geneity in finite mixture models. Journal of the Royal Statistical Society, series B

(methodological) 63: 19-29.

Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, et al. (2013)
Improved detection of common variants associated with schizophrenia and bipolar
disorder using pleiotropy-informed conditional false discovery rate. PLOS Genetics

9(4).

Liley J, Wallace C (2015) A pleiotropy-informed bayesian false discovery rate adapted
to a shared control design finds new disease associations from gwas summary statistics.

PLOS Genetics .

34



8]

[10]

[11]

[12]

[13]

[14]

[15]

Lo PR, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, et al. (2015)
Efficient bayesian mixed model analysis increases association power in large cohorts.

Nature Genetics 47: 284-90.

Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, et al. (2015) The fine-scale

genetic structure of the british population. Nature 519: 309-314.

The Wellcome trust case control consortium (2007) Genome-wide association study of

14000 cases of seven common diseases and 3000 shared controls. Nature 447: 661-678.

Fortune MD, Guo H, Burren O, Schofield E, Walker NM, et al. (2015) Statistical
colocalization of genetic risk variants for related autoimmune diseases in the context

of common controls. Nature Genetics 47: 839-846.

Cooper JD, Simmonds MJ, Walker NM, Burren O, Brand OJ, et al. (2012) Seven
newly identified loci for autoimmune thyroid disease. Human Molecular Genetics 21:

5202-5208.

Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic lia-
bility of type 1 diabetes and the onset age among 22, 650 young finnish twin pairs in

a nationwide follow up study. Diabetes 52: 1052-1055.

Howson JMM, Walker NM, Smyth DJ, Todd JA (2009) Analysis of 19 genes for
association with type 1 diabetes in the type 1 diabetes genetics consortium families.

Genes and Immunity 10: S74-S84.

Howson JM, Rosinger S, Smyth DJ, Boehm BO, Todd JA, et al. (2011) Genetic

analysis of adult-onset autoimmune diabetes. Diabetes 60: 2645-2653.

35



[16]

[21]

[22]

Howson JM, Cooper JD, Smyth DJ, Walker NM, Stevens H, et al. (2012) Evidence
of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes. Diabetes 61:

3012-3017.

Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, et al. (2009) Genome-
wide association study and meta-analysis find that over 40 loci affect risk of type 1

diabetes. Nature genetics 41: 703-707.

Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, et al. (2015) An atlas

of genetic correlations across human diseases and traits. bioRxiv .

Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR (2012) Estimation of pleiotropy
between complex diseases using single-nucleotide polymorphism-derived genomic re-

lationships and restricted maximum likelihood. Bioinformatics 28: 2540-2542.

Traylor M, Bevan S, Rothwell PM, Sudlow C, 2 WTCCC, et al. (2013) Using pheno-
typic heterogeneity to increase the power of genome-wide association studies: Appli-
cation to age at onset of ischaemic stroke subphenotypes. Genetic Epidemiology 37:

495-503.

Wen Y, Lu Q (2013) A multiclass likelihood ratio approach for genetic risk prediction

allowing for phenotypic heterogeneity. Genetic epidemiology 37: 715-725.

Chatterjee N, Carroll RJ (2005) Semiparametric maximum likelihood estimation ex-
ploiting gene-environment independence in case-control studies. Biometrika 92: 399-

418.

Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators
and likelihood ratio tests under nonstandard conditions. Journal of the American

Statistical Association 82: 605-610.

36



[24]

[25]

Cortes A, Brown MA (2011) Promise and pitfalls of the ImmunoChip. Arthritis

Research and Therapy 13.

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, series B (methodologi-

cal) 39: 1-38.

Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning.

Springer Series in Statistics. Springer.

Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, et al. (2010) Data
quality control in genetic case-control association studies. Nature protocols 5: 1564-

1573.

Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to genetic-

based association studies. Theoretical Population Biology 60: 155-166.

37



A method for identifying genetic heterogeneity within
phenotypically-defined disease subgroups
Supplementary Note

James Liley, John A Todd and Chris Wallace

November 8, 2016






Contents

I1 Disease models 1n A7 and H|

1.1 Disease models in Hqy|. . . . . . . . . e
[1.2  Disease models in Hg|. . . . . . . . . . e e e
1.3 Subgrouping by a risk factor|. . . . . . . ..o

[2.1.1  Unstratified groups|. . . . . . . . . . . .
[2.1.2  Adjustment for strata] . . . . . . ...
[2.1.3  Adjustment for covariates] . . . . . . . ...
2.2  Z; and Z, are conditionally independent in categories 1 and 2[. . . . . . .. ... ... ..
[2.2.1  Unstratified or stratified groups|. . . . . . . . . . ... oo Lo
[2.2.2  Adjustment for covariates| . . . . . . . .. ..
2.3 SNPsin category 3| . . . . . . . . e
[2.3.1  Unstratified groups|. . . . . . . . . . L
[2.3.2  Adjustment for strata] . . . . . .. ..o
[2.3.3  Adjustment for covariates| . . . . . . . . ...
2.4 Unequal subgroup prevalences|. . . . . . . . . . . .. L
241 Motivationl . . . . . . . ..
[2.4.2  Behaviour of standard approach| . . . ... ... .. ... ... ...
[2.4.3  Adaptation| . . . . . .. L
[2.4.4  No adjustment - unbiased sampling|. . . . . . .. .. .. ... ... ... ... ...
[2.4.5 Adjustment for strata] . . . . . . ... L
[2.4.6  Adjustment for covariates] . . . . . . ...
2.5 Testing procedure|. . . . . . . . L L
[2.5.1 Algorithm| . . . . . . . . . .

[3.1 Simulations of random genotypes| . . . . . . . .. Lo
3.2 Simulation on GWAS case group subgroups| . . . . . . ... .. Lo L.
|3.3  Distributions of parameter values for simulation and power calculations| . . . . . ... ..

4.2 Method 1: control-subgroup 1 vs control-subgroup 2f . . . . . . ... ... ... ......
[4.2.1 Expected behaviour| . . . . . . .. ..

[4.2.3 Application toreal data] . . . . . . . ... ..o o
[4.3  Method 2: Z; (case vs control) vs Z, (subgroup 1 vs 2)| . . .. ... ... ... ... ..

3

S O ou G

25
25
26
27



4 CONTENTS

4.3.1  Expected behaviour, and relationof p, top . . . .. . ... ..o 0000 33

4.32 Simulationsl . . . . . ... 35

[4.3.3 Application toreal data] . . . . . . . ... o Lo 35
6_Otherl 41
[b.1  Alternative test statistics for retrospective single-SNP analysis| . . . ... ... ... ... 41
[5.2  Independence of PLR distribution on subgroup sizes| . . . . . . ... ... ... ... ... 42

42

5.3 Number of simulations necessary to fit null distribution| . . . . . . ... ... ... .. ..




Note 1

Disease models in H; and Hj

We define ‘differential causative pathology’ (our alternative hypothesis, H;) to mean that some subset of
disease-associated variants have different population effect sizes in the case subgroups in question. Our
method tests against the null hypothesis Hy that all disease associated variants have the same effect sizes
in both subgroups. An equivalent formulation of Hy is that the (possibly empty) sets of SNPs which
have different minor allele frequencies in case and control groups and which have different minor allele
frequencies in case subgroups are non-intersecting.

The multitude of potential causes for disease heterogeneity necessitate that both Hy and H; encompass
a range of such causes. We list several below, with illustration in supplementary table

We define the ’genetic architecture’ of a trait as a set of variants and corresponding effect sizes (log-
odds ratios or asymptotically similar statistics) between populations with and without the trait. In
general, most effect sizes are zero or negligibly small.

1.1 Disease models in H;

The simplest model of disease heterogeneity in H; is the scenario in which some variants are associated
with one case subgroup, but not the other. For such a variant the effect size in one subgroup is zero, and
in the other nonzero. This would be expected to arise if some of the pathological processes giving rise to
the disease were specific to one case subgroup.

A second potential model in H; is when the same variants are associated with both subgroups, but
the relative effect sizes differ. This may arise in a situation where pathological processes differ in relative
impact between subgroups. For instance, if two pathological processes may lead to a disease of interest,
and one process is likely to occur during the neonatal period while the another is likely to occur during
adolescence, a division of a case group into neonatal-onset and adolescent-onset would likely show variants
associated with the first process as being more important in the first subgroup, and variants associated
with the second process as being more important in the second, although the set of associated variants
may be the same in both subgroups. The scenario may also arise if the cases can be split into subgroups
like those described in the first paragraph, but the subgrouping criterion is only an approximation to this
split.

A third model is when the same variants are associated with both subgroups with but where the
effect sizes in one subgroup are a constant factor larger than in the other subgroup. This corresponds to
differential heritability between subgroups, with the same pathological processes present. In a liability
threshold model where some environmental variable has an additive effect with genetic risk, we would
expect that defining subgroups based on the environmental variable would lead to this scenario (figure .
In this case, the environment modulates the effect of the genetic risk. As an example, under the assumption
that a dietary risk factor has an additive effect with genetic risk factors in type 2 diabetes, a disease
subgroup with the dietary risk factor would be expected to have lower disease heritability than a subgroup
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without it.

1.2 Disease models in H,

Under Hy, all disease associated variants have the same effect size in both subgroups. This may take
the form of an absence of any systematic genetic difference between case subgroups, in which case the
population allelic frequencies of disease-associated SNPs, and hence the effect sizes of such SNPs between
controls and each case subgroup, are equal.

Hypothesis Hy also allows the presence of genetic differences between subgroups at different SNPs to
those associated with the disease. This may be particularly prominent if variation in the disease depends
on how the disease process acts on different individual physiologies, in which case genetic variation between
subgroups is at different SNPs to those involved in disease causality.

Gen. risk Env. risk Pr(D|G,E) Pr(D,G,E)

P4 aﬁpm

Pig a(1-B)p;z
Pop.

P24 (1-0)Pp;,

L: p= ]'ﬁ Pop (]'a)(]'ﬂ)pZB

Figure 1.1: In a simplistic disease model, we consider two levels of genetic risk G with frequencies «,
1 — « and an independent two-level environmental risk factor E with frequencies 5, 1 — 8, and a disease
D. In cases with the environmental risk factor, we would expect the ratio of high-genetic risk to low-

genetic risk cases to be &g;—‘:, and in cases without, ﬁ%' Assume we define subgroups based on the
environmental risk factor. If the risk factor has a multiplicative effect on Pr(D|G, E), so 17;;—3 = ;;;—g, the

prevalences of genetic risk groups are identical in the groups, and the heritability of D is the same. If the
effect of the environmental risk factor on Pr(D|G, E) changes with G, so the environmental risk factor
modulates the genetic risk, this will not hold.

1.3 Subgrouping by a risk factor

Partitioning a case group by a known disease risk factor may lead to subgroupings in either Hy or H;
dependent on the interaction between the genetic and environmental risk factors. If the risk factor on
which the subgrouping is based has a multiplicative effect on disease risk with genetic factors, then we
expect the subgrouping to be in Hy (figure . This may take the form of a binary risk factor: if a
disease is triggered by an environmental event (for example, a particular mutation driven by environmental



1.3. SUBGROUPING BY A RISK FACTOR 7

mutagens), with susceptibility to that event determined genetically (for instance, impaired ability to
repair the mutation), conditioning on environment will not affect the distribution of genetic risk, and
the subgrouping will be in Hy. The genetic risk may also be binary; for example, the development of
a disease may require the knockout of a particular cellular process, with the genetic risk for the disease
solely involved in risk of the knockout.

However, deviation from a locally multiplicative model can also lead to a subgrouping in H;. One
instance this may occur is if disease risk approaches 1. A current model of T1D pathogenesis requires the
presence of an environmental insult to trigger genetic susceptibility ([I]), which could be expected to lead
to a locally multiplicative relationship between age-at-diagnosis and genetic risk (figure|1.2). However, if
genetic risk can be high enough that some individuals are almost sure to get the disease, this will lead to
the subgrouping being in H; - a potential reason for the observation regarding age-at-diagnosis in T1D
in the main text.

Finally, cases may be subgrouped according to non-causative clinical disease associations. Assume
some binary clinical marker M has non-zero frequency in healthy individuals and has some set of associated
genetic variants Gy. Let D be a genetically homogenous disease with a set of associated variants G such
that GoNG1 = 0 and D (or a necessary precurser of D) probabilistically causes M to occur more often than
in the general population. Then when we condition on case status (and hence any necessary precursers of
D) the only variants which are associated with M-status in cases will be in Gy, and a subgrouping based
on M will be in Hy, despite M being associated with D. If, however, subtypes of D with differential
genetic basis induce M to different degrees, and hence M serves as an index of such subtypes of D, then
a subgrouping of M will fall in H;.
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Figure 1.2: In a simplified model of incidence of type 1 diabetes or a similar autoimmune disease, we
consider the disease to be triggered by an environmental ‘insult’; for instance (eg, a viral illness) and
three levels of genetic susceptibility to such insults. Denoting by f(A) the density of such insults at
age A (red vertical lines show a possible example for one individual), we expect that for individuals at
low or moderate genetic risk the densities r1(A), r2(A) of disease incidence are proportional to f(A),
with lifetime risk [ r1(A)dA, [ ro(A)dA respectively. The risk of disease at age A can be considered a
product of f(A) and a genetic risk score. In a high-risk group for a disease such as type 1 diabetes, it
is possible that the lifetime risk [r3(A)dA approaches 1, the high-risk group becomes ’saturated’ with
disease cases, and there are fewer non-affected individuals in the group at higher age groups, leading to
a lower constant of proportionality with f(A) at higher ages (dotted/solid lines). In the absence of the
high-risk group, a subgrouping of patients into those with age-at-onset X and those with age-at-onset Y
(vertical lines) would be expected to contain the same proportion of low- and mid- genetic risk samples
in each subgroup, with correspondingly equal heritability of disease in each subgroup. With the high-risk
group, the multiplicative effect of f(A) on disease risk breaks down, inducing an environmental influence
on the genetic risk, and changing the heritability between groups.



Note 2

Distribution of Z scores

In this section, we define the test statistics (Z scores) used to characterise allelic differences between
groups and describe the rationale for our probabilistic model.
We partition SNPs into three theoretical categories:

1. SNPs which are not associated with case/control status or case subgroup status

2. SNPs which are associated with the main phenotype but have the same effect size in both case
subgroups

3. SNPs which are associated with the difference between case subgroups

We consider SNP effect sizes between subgroups and between cases and controls to be realisations of
bivariate random variables, which have different distributions in each category.

2.1 Definitions

2.1.1 Unstratified groups

Let  be a random sample of size n, from patient population X, and y a sample of size n, from a
population Y. Denote by mg, m, the allele frequencies of some SNP of interest in  and y, and by u,,
fy the allele frequencies in X and Y. We assume for the moment that z and y are unbiased samples, so
pz = E(mg) and py = E(my).

In general, we compute Z scores from GWAS -defined p-values P, using the formula

Zny my (Mg,my) = =0 1Py, /2)sign(my —my) (2.1)

z’ny
Although there are several ways in which a GWAS p-value may be computed, the resultant Z scores all
have several common asymptotic properties. In general, we assume a Z score Zy, n, (me, my) is a smooth
function of allele frequencies m;, my, n., n, with the following properties

Ny Mg +NyMy

1. For fixed observed overall allele frequency T

difference m, — m,

s Zngmny, (Mz,my) is monotonic to the allelic

2. Under the null hypothesis p, = p,
(a) E(Zn,n,(ma;my)) =0
(b) var(Znp, n,(mz,my)) =1

(€) Zngn, (Mg, my) —q N(0,1) as ng,ny — o0
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These properties imply that the first-order expansion of Z about (mg, my) = (i, 1) is

2ngny Mg — My e —
Z"m”y(mx’my) = \/; (L= 1) + O ((my — p)(my — ) (2.2)

\/%(mx - ,U:Jc) —d N(Oa ,U:Jc(l - MZ))
V2ny(my = py) —a N0, py (1 = 1))

since

(2.3)
and if py = py = p
Mally Mo — My o)1) (2.4)
N +ny /(1 — d '
and only one linear function of mg, m, can be asymptotically N(0,1).
If g # py and
\ = Ha — Hy (2.5)
\/uz(l pa) | py(1=py)
2Ny 2ny
remains finite as n,,n, — oo, we have
My — My
an’ny mfﬂ’my mg (1—my) my(l—my)
2Ny 2ny
_ (ma —my) — (e — ) P — Hy
\/mz (1-mg) my(l my) \/mm (I-mg) my(lfmy)
2N 2ny 2N 2ny
—d N(O, 1) + A
=N(\1) (2.6)

For a randomly chosen SNP, let p. be the population allele frequency (AF) in controls, and gy, p2
the population AF's in case subgroups 1 and 2 respectively, for the same allele. Define v as the relative
prevalence of subgroup 1 and 1 — v as the relative prevalence of subgroup 2. The population AF across
all cases is p12 = v + (1 — v)po.

Denote by m., m1, ms the corresponding observed AFs in a study with n., nq, ne controls and samples
in subgroup 1 and subgroup 2 respectively. Define mis = "lmniiizzm as the AF in the whole case group
and nia = ni + no. We assume that - +n2 ~ v; that is, the case group is an unbiased sample of the case
population. We later describe how thls assumption can be relaxed.

The values Z, and Z; are defined as

Zq = Zny ny(m1,m2) (2.7)

Za = n1+n2,nc(m127mc)

2.1.2 Adjustment for strata

If the distribution of some categorical variable (for example, country of origin) associated with allele
frequency varies systematically between x and y, stratification may be needed when computing GWAS
p-values. This may mean that E(m,) # E(m,), even if the expected allele frequency is the same in z
and y in each stratum.
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2 ..., n® be the number of samples, mL, m?2...
mk the observed allele frequencies and jl, p2,..., u* the expected allele frequencies for a SNP of mterest
in each stratum (and analagously for y).

Assume z is divided into k strata 1..k, and let nl, n?

We assume the Z score Zgy,. 3 tn,} ({ma}, {my}) in this case is a smooth function of {n}}, {ni}, {m%}, {m}},
which has a first-order expansion about u', u?, ... u* of the form

iy (i}, () = ! Skt —ml) +0 ( S kot — )2>

3 kf’;;:y il — pt) itk iel.k

i€l..k

N \/var (Ziily(nz;__mililx _ Mi) +0 (Z kz(m; - m?y)Q) (2.10)

where coefficients k; depend only on the values {n,}, {n,}. For example, if the Cochran-Mantel-Haenszel
. d ki — 2nTny
test 1s used, k; = Tty

Using analogous definitions to section we now define

Zq = Znyy noy ({ma }, {ma}) (2.11)
Za = Z{n1+n2},{nc}({m12}v {mc}) (2.12)

We term the coefficients of the allelic differences m{ — mb, mt, — m? in the decomposition of Z and Z,
above as kg, kq; respectively.

2.1.3 Adjustment for covariates

If the distribution some continuous confounder associated with allele frequency (for example, height) has a
systematically different distribution in  and y, adjustment for covariates may be needed when computing
GWAS p-values

We set G(i) as the numerical genotype of sample i (0,1,or 2) and w; as the covariate value(s) for
individual 7. We consider w; to be a sample from a random variable Z with pdf f, in  and f, in y.

We define the Z score Z, ,({G},{w}) in this case as a function of observed genotypes which permits
a first-order expansion

Zry({G} {w}) = (2.13)

ﬁ D ha(w)GG) = 3 hy(ws)G ()

where h, and h, are functions of covariate scores, depending on the distribution of w in x and y and the
relative sizes of n, and n,, and parameter m is some measure of the overall allele frequency.

The coefficients hg(w;), hy(w;) can be considered to be ‘normalising’ the contribution of genotype i
to the Z score according to the relative density of covariate w; in x and y. If the density of some weight
wp in z is lower than the density in y, then h,(wg) should be greater than h,(wg) to compensate for this.
Indeed, we show that this has to be the case.

The expected genotype of an individual may depend on their covariate value; for an individual 7 with
covariate value(s) w; in x set g,(w;) = E(G(i)), and set g, similarly. Under the null hypothesis, g, = gy,
and the expectation of Z must be 0. We can write the expectation of Z, ,({G},{w}) as an integral over
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the domain of w; namely

E(vm(l —m)Z,({G}, {w})) Zh w)G (i) = D hy(w)G(j)

- Z he(w;)E(G(3)) — Z hy(w;)E(G(j))
=D ha(wi)ge(wi) = 3y (w;)gy (w;)

e ha(w) fo(w)ga(w)dw —ny, hy(w) fy(w)gy (w)dw
o [ ) a@gstwide—ny [ s @)
_ /D 1 90) ) F(00) = myhy )y ) (2.14)

Since this must hold for all SNPs and thus for any well-behaved function g,, we must have

Ngha fo = nyhy fy (2.15)

This arises intuitively if we consider adjustment for covariates analogously to adjusting for strata
We can rewrite equation summing over samples rather than strata (defining S(i) as the stratum of
individual 7):

Zinay (e}, {my}) m(ll_ =X o GO =37 ijG( i) | o (domi—mi)?) (216)

s €s3)
2n%, Qn?,;
by multiply-counting certain individuals in under-represented strata and under-counting individuals in
over-represented strata. This is analagous to ‘normalising’ the contribution of G(7) by h; according to
the population prevalence of covariate value z;; that is, fz(z;).

The sums of genotypes on the right of equation [2.13|can be considered as ‘effective’ allele frequencies,
and we define

The values can be considered to be ‘normalising’ the distribution of strata across x and y

ml, = th(zi)G i

1ET

my, =Y hy(z)G(j) (2.17)
Jj€y
A T IR T € )

var(ml,) Ny = var(mj)

so that, like allele frequencies, and under appropriate assumptions on the forms of f., fy, g, gy:

with expected values fi},, p1; respectively. We define ‘effective’ sample sizes n), =

r
Me —Fe 0 N(0,1) (2.18)
(1 B)
and similarly for mj.
We now define
Zd = anse 1,case 2({G}, {w}) (219)

Lo = anses,controls({G}y {w}) (2'20>
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2.2 Z;and Z, are conditionally independent in categories 1 and 2

2.2.1 Unstratified or stratified groups
For SNPs in categories 1 and 2, u; = po. Hence

cov(Zq, Zg) x cov(mig — me,my —ms)

<n1m1 + nams
=cov| —

— Mg, M1 — M2
ni + no

= e (cov(nimi, my) — cov(nama, m2))
1

= e (L1(1 = pa) — p2(1 = p2))

(2.21)

which is 0 under Hj in categories 1 and 2.

For stratified groups, the same holds for each stratum; that is, cov(mi, — mé, m} —mb) = 0. The
independence of Z; and Z, follows from the expression of Z; and Z, as proportional to sums of allelic
differences within strata and independence of the allelic differences in each stratum.

2.2.2 Adjustment for covariates

If we are adjusting for covariates, since E(Zy) = E (Z ha(w;i)G(i) — > hg(Mj)G(j)) = 0, we have
i€cl j€EC2

cov(Za, Zalpy = ) o cov | D haa(wy)G(j) = D he(wi)G(i), Y ha(wi)G(i) = Y ha(wy)G(j)

J€Ecases i€ctl iccl JjEC2

=cov [ Y " hia(wi)G(0) + D hao(wj)G(5), Y ha(wi)G(i) = Y ha(w;)G())

i€cl j€EC2 i€cl JjEC2

= E Y hia(z)hi(w)G()(1 = G(i) = > haa(z)ha(wi)(G(7)(1 = G(4)))
i€cl j€EC2
— /Rhm(w) (n1h1(w) fr(w) — naha(w) f2(w)) g1 (w)(1 — g1(w))dw
_0 (2.22)

The cancellations are possible because genotypes vary independently in each group; in the second line,
> he(w;)G(i) L Y7 hi(wy)G(i), Y ho(w;)G(j), and in the third line, Y hia(w;)G(i) L > ho(w;)G(j)

i€ctl iccl Jj€EC2 iccl JjEC2

and ) hio(w;)G(j) L > hi(w;)G(i), and g1 = g2 under Hy. In the fourth line, nihi(w)fi(w) =
JjEC2 i€cl

naha(w) f2(w).

2.3 SNPs in category 3

Under Hy, SNPs in category 3 have the same allele frequency in cases and controls but different population
allele frequencies between subgroups. Such a set may arise if subgrouping is based on some partially
genetically-determined trait which is independent of the main phenotype has the same prevalence in case
and control groups. An example may be subgroups defined by heterogeneity in treatment response arising
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only from individual pharmacokinetic variation. Under this assumption, the marginal variance of the joint
distribution of Z4, Z, in the direction of Z, is 1, and Z4, Z, are uncorrelated.

Under H; we expect SNPs in category 3 to be associated both with case/control status and with
subgroup status. We therefore expect the marginal variances of the joint distribution to be greater than
1 in both the Z, and Z; directions, and possible correlation/anticorrelation between Z, and Zj.

Define ((pz, pty) as the population normalised log odds ratio between p, and fi,:

C(ptas 11y) \/Tlog(w( My)) (2.23)

1= py)
Mz —
= 2+ O (e — 1y)?)
f(1 - u) !
where 1 = %(,u.r + py). For a set of SNPs of interest, we consider pui, p2, it to be distributed such that
Ca = C(p1, pn2) and ; = ((p12, pe) can be considered to be random variables with joint pdf:

1
Facio =5 \ M) @ ) 224

PO Og PO Og

with o4, 04, and pg independent of ni, na, n.. Under Hy, o, = 0 (same MAFSs in cases/controls) and
po = 0. We assume that (; and (, are conserved across strata and covariates.

2.3.1 Unstratified groups
Combining equation with the first-order expansion of equation about [:

P —
(s py) = ——e 4 O ((pa — 119)°)
(1 — fi)
- Ng + Ny
~ 2n$ny an,ny (anﬂy) (225)

so defining fig = %(Ml + p2) and fi, = %(ulg + pe), we note (defining ¢, and ¢g):

E(Zglfia, Ca) = E(Za|pa, pr2)
= Znhnz (.UlvF‘Q)
2n1n2
d
ny + ne

def
=cila

_ 27112’[7,
E(Za|,uaaCa) = \/ 7”6127-1-7;@
C

def

= ¢q (g (2.26)
Set p = (p1, p2, pie). Since myq, my and m, are conditionally independent given pu we have

cor(Zy, Zglp) = cor(miz — me,my — ma|p)

nimi+nama
n1+n2

o(ms — me|p)o(my — mo|p)
cov(nyimy, my|p) — cov(nama, ma|w)
(n1 + n2)o(ms — me|p)o(my — me|p)
pa(1 = puy) — pa(1 — po)
 (n1+na)o(ms —me|p)o(my —ma|p)
~0

cov( — M, M1 — M2 |p)
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From equation var(Zglp, pe) = var(Zg|p, pe, pe) = 1. Thus approximately:

() gascome v ((22) 1) (2.27)

and the pdf of (Z, Z3)" at (z,y) has value

// NCdCdCaCa)T Iz(x y) o2 0d7p0(cd7<a) dCd d(a

:Fl-‘,-cg 02,14c2 0% cqcapo (.CU, y)
1
ZZ(N((O) (1+c§(3 CaCdpo )) (SC, y) + N<(O) ( 1+c2¢2 fcacdpo)) (ZC, y)) (228>
077\ cacapo 1+¢2¢2 077\ —cacapo 1+c2(2
which is a symmetric two-Gaussian distribution. Under Hj, the marginal variance in the direction of Z,
(fitted 03) is 1, and the covariance between Z, and Z, is zero.

2.3.2 Adjustment for strata

For Astratiﬁed groups, we assume (g and Cq are conserved across strata, and set ﬂil = %(,u’ + ub), pl =
%(,uz12 + put), ka; as the coefficient of m} — m}, in the first-order expansion of Z; (equation , and ky; as
the coefficient of mj, —m{, in the first-order expansion of Z, to find

E(Zal{pa}, Ca) = E(Zal{in}, {f2})

1
~ 5 kdz
2 N +”2 =1
> kdenn RE(1 — [h) itk

i€l .k

Z kdz ﬂfj(l - ﬂfj)
nt +n
\/Z Kii's: 2t nf (1 — fiey)
dez

Ca

N0
2 n’ +n
Z di 2n n2
= ¢l (2.29)
and
1 _ kai
E(Za‘{uia /-1'(217 ceey M];jﬁ Ca) ~ @Ca
ni,+nt
Zkgl 2:12 nl
L, (2.30)

assuming that for most SNPs the values ji’y, i’ do not differ markedly across strata. If the Cochran-
Mantel-Haenszel test is used,

9 7 i
o =3 Fele (2.31)

and the pdf of Z4, Z, is then as for equation [2.28| with ,, ¢/ in place of ¢4, c,.
d> ~a p
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2.3.3 Adjustment for covariates

The expression for Z, ,({G}, {w}) can be rewritten as:

1 /

—(m/, —m/ 2.32

We define the analog of ((pz, pty) given covariate(s) w

Zry({G} {w}) =

GOt = /)1 = ) g (Ll =Pt (2.33)

and assume that this is independent of w; that is, the effect size is conserved with respect to the covariate.
The joint distribution of Z; and Z,, is then given by the analog of equation with appropriate analogues
of ¢q, cq.

2.4 Unequal subgroup prevalences

2.4.1 Motivation

The criteria by which subgroups are defined may have a different distribution in the population than in
the case group, with the consequence that the disease subtype corresponding to one of the subgroups may
be oversampled relative to its true prevalence in the population.

This leads to inaccuracies in the inferred genetic architecture recovered from a case-control study (ie,
a typical GWAS), which may take the form of false-positive associations. If there exist variants which
differentiate subgroups, oversampling of one subgroup will bias the the observed overall variant effect
sizes toward the effect size in the oversampled subgroup, even if the variants are unassociated with the
phenotype overall.

In serious cases, this could lead to false identification of variants associated only with subgroup status
as associated with the disease as a whole. For example, a GWAS on rheumatoid arthritis (RA) in which
the case group had a high prevalence of obesity may identify purely obesity-associated variants as RA-
associated.

For stratified and covariate-adjusted analyses, the equivalent problem is failure of population subgroup
prevalences to match study subgroup prevalences within each strata or across covariates. This could be
a result of ascertainment bias; different geographic locations could report different frequencies of disease
subtypes due to differences in clinic specialties.

As well as affecting conventional GWAS analyses, we show below that subgroup oversampling can
cause false-positives in our test. We provide a modification to our method to account for this.

2.4.2 Behaviour of standard approach

We mathematically demonstrate the effect of mismatched sample and population subgroup frequencies in

the scenario where no strata or covariates are used. The extension to the generalised cases is similar.
Assume that in the disease population, the ‘true’ prevalences of subgroups 1 and 2 are v, 1 — v, and

define p192 = vy + (1 — v)ue as the underlying MAF across all cases in the population. In the hypothesis

test to compute P,, the hypothesis H, : . = % is not equivalent to H : . = p12.
Since E(my3) = E (nlﬁiizng) = ”%ig;m # 112, equation [2.27| becomes
Zq Znyns (15 p2) ) >
~ N 12 L Wi 2.34
<Z‘1) e <<Zn12,nc(m¢ﬁi¢éu2 s He) 2 ( )
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Now

nip1 + nopo Cq N1 + No o
anz,nc — S Hc | = - ,U/c)

ny + n p(l—p)  ni1+n2

= L_L(Cl“_m ((um — fie) + (annQ - V> (11 — m))
~ ca(Ca + kCa) (2.35)

where k = (=2.— — 1), so the unconditional distribution of (Z, Z4)” in this case is given by
ni+n2

T Vst ensecan s 9) o G ) G s

1
T2 <N((8)vvz)(x’y) + N((8),aa)(x’y)) (2.36)
where
oy = < L+ 3G caca(po + KC3) >
27 \eacalpo +kC3) 1+ (¢ + E2C3 + 2kpo)
_( 1tad caca(—po + kC3)
T (caccz(—ﬂod+dk§§) 1+ c2(¢2 + k3¢ _d2kp0)> (2.37)

Distribution [2.36] consists of the sum of two Gaussians which are not mirror images in the z and y axes.
Conceptually, the aberrance between prevalences of subgroups in the population and in the study induces
a bias in Z, toward either Z; or Zs, whichever is comparatively over-represented in the study compared
to the population.

This effect is demonstrated in figure 2.1}, with simulated data and approximate distribution as per|2.36
As the discrepancy between the relative proportions grows, the distributions precess around the origin.

Importantly, under Hy (0, = 0, po = 0) the distribution of Z4, Z, will not satisfy o3 = 1, p = 0, and our
standard approach is inappropriate.

n1/n2 =0.67, V1/V2 =0.67 n1/n2 =0.67, V1/V2 =2 n1/n2 =0.67, V1/V2 =9
o
g " g g -
< < <
8 8 8
3 ° 7 T o T © 7
12} 12} (2]
8 8 8
< v ] = < %A
N ! N v _| N
! o
o | T
! T T T T T T T T T T
-5 0 5 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Z, (between subgroups) Z, (between subgroups) Z4 (between subgroups)

Figure 2.1: Distribution of (Z,, Z4) for SNPs in category 3 when observed subgroup frequency (ni/nsa)
does not match underlying subgroup frequency in the population (v4/v2 = v/(1 — v)). Red and blue
points correspond to the two Gaussian distributions comprising the underlying distribution of effect sizes.
Contour lines of distributions are shown. Note the precession in the axes of the distributions as the
difference between v /vo and nj/ng increases, and loss of symmetry when v /va # ni/na
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2.4.3 Adaptation

If the true proportion of case subgroups in the population are known, the problem of oversampled sub-
groups can be overcome by a recalculation of Z,. The problem broadly arises because the expected value
of the observed allele frequency in cases, F(mi2), is different from the true allele frequency pi2 in cases
in the population, for SNPs in category 3.

This can be addressed by using an unbiased estimate of the true population allele frequency m/, =
vmy + (1 — v)mg in place of mjs. The resultant Z score, Z., is obtained by adjusting Z, by subtracting

a multiple of Z;:

2= (Za - B22) (2.39)

a /1 + /32
so, given a between-subgroup effect size (g4, var(Z,|(q) = 1. We choose 8 so that E(Z!) = 0 for SNPs in
category 3 (see below). The adjustment leads to systematic covariance between Zy and Z,.
Z, and Z; are independent conditioned on (,, (4 and ji. Thus under Hy and conditioning on i

cov(Z), Zg|Ca, Ca) = E(Zy(Za — BZ4)|Ca, Ca)

ﬁ
1
W
—rar(ZiG)
Y
—B

and because (4 and (, are independent under Hy, cov(Z.,, Zy) = JiE in every category. We denote this

(E(ZaZa|Ca: Ca) — BE(Z3|Cas Ca))

1

m+m

(2.39)

consistent covariance by p.
Hence the overall model for Z;, Z, changes to

PDFZd,Za|6(da a) :771N( 1 pc) (d,a) (category 1)
pe'1
+maN /1, (d,a) (category 2)
(Pc 0%)

+73 (;N< 2 p+pc> (d,a) + ;N< -2 —p+pc) (d, a)) (category 3) (2.40)

ptpc o2 —p+pe o3
where, under Hy, p = 0 and o3 = 1. This requires a slight modification of the fitting algorithm. Our R
package at https://github.com/jamesliley/subtest contains an implementation.
2.4.4 No adjustment - unbiased sampling

If no strata nor covariates are used, we set

e (2.41)

recalling the definitions of ¢, and ¢4 from equation and that v is the proportion of cases of
is the proportion in the study. The value k = ( M 1/) thus

ni
ni1+ne ni+n2
corresponds to the dissimilarity between subgroup prevalences in the case group and in the population.

subgroup 1 in the population while


https://github.com/jamesliley/subtest
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Under Hy, for SNPs in category 3 we have

B(ZL)¢) « B (za - z{“zd)
d

== (M =) = (g ) o =m)
= m]ﬂ (vmi + (1 — v)mg — me)
—0 (2.42)

since E(vmy + (1 —v)mg) = v + (1 — v)us = pe = E(m,) for all SNPs under Hy.

2.4.5 Adjustment for strata

In the equivalent adjustment for stratified groups, we define

+
Zkﬁzgi :2 2 Kai (m ”)
Sk k2 niytni > kg

ai 2nj nl

(2.43)

so, assuming j§ — p5 are conserved and fiy,, fi; are close to conserved across strata, and given fi;, ~ fi}| Ho:

kai o — Zc kz L= b
(7 |Ho) = ——2e bWy ) 2 Rasn = i)
rEs Fiall = 1%) Vzkiaiﬂzu—uw
Ekaz ,u12 dei(ﬂi_ Z)

N _ — +
\/ﬁm il — )| K3

nd 4 nb b , n' ‘ ,

= S b (M i) () (- )

ROETAN iyt ny+ny ny +ng

Hall = Ha ai 2nt,nt

1 . o

= —— (> kail(vpth + (1= v)p) — b))

— — i +ni

ia(1— fia)y | 0 k5

=0 (2.44)

2.4.6 Adjustment for covariates

If covariates are used, we define the functions hio, h1, f1, fo as per section and set

Jowy hr2(w) (n1(1 = v) fr(w) — nav fo(w)) dw
Jowy il (w) fr(w)dw

8= (2.45)
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E(Zy) o/ (1 — i) E(Zy — $Za)

= (Z ha(w)G(i) + > haa(w)G(i) — Y hc(wi)G(z')>

i€cl 1€c2 i€controls

- B (Z I (wi) G(i) = hz(wi)G(i)>

i€cl 1€c2

—>/ hiz(w) (n1fr(w)gi(w) + na fa(w)ga(w)) — nehe(w) fe(w)ge(w)dw
D(w)

— Bgr(w) — ga(w)) / nahy (w) fi (w)duo

D(w)

= /D( | hia(w) (n1 fi(w) + na fa(w)) (vg1(w) + (1 — v)ga(w)) — nehe(w) fe(w)ge(w)dw

- / 2 ia) (93 (0) + (1= V)ga() — o) o
—0 (2.46)

since niohis fio = nchefe and nihy f1 = nohs fo from section g1 — go is constant by assumption, and
the expected population genotypes at covariate value w are the same in cases (vgi(w) + (1 — v)ga(w))
and controls (g.(w)) under Hy.

2.5 Testing procedure

2.5.1 Algorithm

For testing a subgrouping S of interest, we use the following protocol:
1. Compute Z, scores between cases and controls
2. For the proposed subgrouping .S

(a) Compute scores Z g corresponding to .S,

(b) Fit parameters of full and null models ©F = arg mazecw, L(Z3, Z4|0), ©F = argmazecu,L(Z3, Z4|©)

(c) Compute uPLR = log{L(Z5, Z4|0%)}~log{L(Z3, Z,|©§)} and adjusting factor f(Z,|07,0F) =
ZOQ{L(Za|@f)} - lOQ{L(Za‘@g)}

(d) Compute PLRg = uPLR — f(Z,|07,05)

3. For > 1000 random subgroups R of the case group

(a) Compute scores Z; corresponding to R
(b) Fit parameters O = argmarecu, L(Z}|Z,,0), ©f = argmazecn, L(Z}|Z,,0)
(c) Compute cPLR = log{L(Z}|Z4,0%)} — log{ L(Z}| Z., ©})}

4. Estimate parameters v, s of the null distribution of cPLR (of the form v (kx3 + (1 — x)x3)), which
majorises the null distribution of PLR.

5. Compute p-value for PLRg using this distribution.

In summary, we compare an adjusted pseudo-log likelihood ratio for a subgrouping of interest to
conditional pseudo-log likelihood ratios for randomly-chosen subgroupings.
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2.5.2 Rationale

A problem arises with the behaviour of the unadjusted pseudo-log likelihood ratio statistic uPLR =
log{L(Z5, 24107} — log{L(Z5, Z,|©5) when the true value of 7 (the marginal variance of Z, in group
3) is near 1, corresponding to an absence of SNPs which differentiate subgroups.

If 7 = 1, there can be no differential genetic architecture between the subgroups, as there are no
systematic genetic differences between them at all. However, the joint distribution of Z;, Z, may still
be in Hy; if Z, has an equally weighted three-Gaussian mixture distribution with variances 1, a?,b?, and
Zq ~ N(0,1), the true parameter values are (mwg, 73, T, 02,03, p) = (%, %, 1,a,b,0) € Hy \ Hyp (figure .

ox>1,t>1 o> 1,t=1

.
bl

24 Zy
oo=1,t>1 op=1,1=1
Z, Zy
\% ﬁ/ Zy Z4

Figure 2.2: Potential for false positives when 7 = 1. Black/grey points and contours correspond to
category 1, blue to category 2, and red/pink to category 3. Top two figures show potential distributions
of Zy, Z, with o3 > 1; bottom two figures distributions with o3 = 1. A test based on the unadjusted
pseudo-log likelihood ratio uPLR = log{L(Z3, Z,|0%)} — log{L(Z5, Z,|0§)} will reject Hy for both of
the top two scenarios. However, we do not want to reject Hy for the top right figure, in which 7 =1 (no
genetic difference between subgroups). This scenario is possible in real data, as the distribution of Z, is
only approximately normal and may more closely resemble a three-gaussian mixture distribution (where
components have variances 0'%, ag and 1) than a two-Gaussian mixture distribution (where components
have variances 0% and 1).

This problem is particularly prevalent in randomly-chosen subgroups, since 7 = 1 by assumption in
this case. If the distribution of Z4, Z, from a test subgrouping is to be compared against corresponding
distributions from random subgroupings, this problem must be addressed.
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Consider the function

K(Z,@) — K(Zda Zaa7Tla7T277—7 0-270-35/))
= PL(Z|®) — E{PL(Z|®©\ 7,7 =1)}
— PL(Z4, Z4©) — PL(Za|®) + ¢(Za) (2.47)

where ¢(Z,) is a constant depending only on the values of Z,. Because the parameters my, o only describe
the distribution of Z,, we have

PL(Z1,24/) ~ 5 PL(Z,[®)

PL(Z4,74/0) ~ 5 PL(Z,|6)

(2.48)
SO gTKQ ~ 0 and % ~ 0, and the value of K changes only slightly with changes in w9, 0o. Set

O, = argmazecny, PL(Z|0©)
@T = arg max@€H1|7r2=7f2,02=<fgPL(Z|®) (249)

Under Hy, there is no systematic overlap between SNPs associated with the main phenotype (for which
the distribution of effect sizes is parametrised by 72, 02) and with the subgrouping phenotype, so fixing
and o9 has minimal effect on the maximum-PL estimates of the other parameters, and hence K(Z,0;) ~
K(Z,07). Because

K(Z,@T) < max@€H1|7r2=7f2,02=zfQK(Z7 @) (250)

we have, setting ©f = arg marec, jro—ry,00—> K (£, 0):

K(Z,01) < K(Z,09) (2.51)

Consider the value
(c) =arg max@EHﬂﬂ'z:ﬁz,O'Q:o:zK(Z? 6) (252)
=argmaz, {PL(Z4,Z,|©) — PL(Z,|©)} (2.53)

Now since o3 is fixed at 1 under Hy, and PL(Z,|©) only depends on 71, 3 through the difference between
the variances of their associated distribution components (1 and o3 respectively), we have

PL(Z,|©) = PL(Z,|%2, ) (2.54)

Thus maximising K in equation is analogous to maximising PL(Zy, Z4|0). If we choose pi; and oy
to be approximately equal to their maximum-PL estimates under Hy, then

@3 =arg maw@eHomzfg,ag:fgPL(Z’@)
~ argmazrecn, PL(Z|0O)
=6, (2.55)

so K(©1) =~ K(©f). Thus, under Hy, using equation [2.51]

¢PLR = K(Z,05%) — K(Z,05)
> K(Z,01) — K(Z,0,)
— PLR (2.56)
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Under Hy, with 7 > 1, the unadjusted PLR (equal to PL(Z|0©;) — PL(Z|02)) and cPLR both have
identical mixture-x? distributions (the scaling factor v arises from LDAK weights, common to both,
and the mixing parameter x tends to be approximately 1/2). The cPLR has the advantage that the
empirical distribution is closely approximated by a consistent mixture-y? distribution for all values of 7.
By comparing PLR to this distribution, we produce a conservative test.

Heuristically, contributions to the unadjusted PLR can come from either the distribution of Z, or
the interaction between Z, and Z;, and inflation in the unadjusted PLR when 7 = 1 arise only from the
former. If the former effect is large, the parameters ©; will tend to be values which maximise the former
effect, at the expense of the latter. By completely eliminating the former effect, using the adjustment,
only this compromised contribution of the latter is allowed to contribute to the adjusted PLR. The
distribution is less conservative for larger values of 7, since the presence of SNPs with large Z, values
constricts the fitted distribution of Z,. By contrast, the values which maximise the cPLR effectively take
into account the adjustment for Z,, and the compromise of the latter effect does not occur.

If we were to use the adjusted uPLR to generate the null distribution using random subgroups, the
majorisation of the observed distribution by the mixture-xy? may lead to loss of FDR control in test
subgroups with 7 > 1. However, using the slightly anti-conservative distribution of ¢cPLR to fit the null
distribution overcomes this problem. Indeed, some conservatism is desirable when 7 = 1 as a double
guard against rejecting Hy. The power of cPLR to reject Hy is, however, somewhat lower than the power
of the PLR, so we test using adjusted uPLR and fit the null distribution with ¢cPLR.
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Note 3

Details of simulations

3.1 Simulations of random genotypes

Firstly, we simulated genotypes at independent SNPs to establish the distributions of PLR and ¢cPLR
under Hy with 7 =1 and 7 > 1.
We simulated the following scenarios:

1. (a) (Z4,Z,) under Hy with 7 =1
(b) (Z4,Z,) under Hy with 7 allowed to vary

2. (Z4,Z,) under Hy

In each case, Z, and Z; were calculated from simulated genotypes at 5 x 10* independent autosomal
SNPs in Hardy-Weinberg equilibrium. Because the sample size only affects PLR through the size of the
fitted parameters (supplementary material, section we fixed the sample size at 2000 controls and 1000
cases of each subgroup and varied the underlying effect size distribution. Larger sample sizes correspond
to larger deviations of underlying values of o9, o3, 7 from 1 (table .

For all simulations, we computed the uPLR and PLR (with adjustment f(Z,)). For scenario[lal (7 =1,
corresponding to random subgroups) we additionally computed the cPLR. Simulations [2 functioned as
power calculations; the results from these are shown in the main text.

We tested over values of 73 from {1073,1072,0.1,0.2}. Values of o5, o3, T were chosen corresponding
to 97.5% quantiles of odds ratios in {1.5,2,2.5} for case/control comparison (Z,) or {1,1.2,1.5,2} for
between-subgroups comparison (Z;), table Values of p were chosen corresponding to correlations in
{0,0.1,0.5}.

97.5% quantile of odds ratios
ni, No 1.2 1.5 2 2.5
500, 500 1.20 1.75 2.66 3.41
1000, 500 1.25 1.94 3.02 3.89
1000, 1000 | 1.36 2.27 3.62 4.71

Table 3.1: Approximate expected standard deviations of observed Z scores for given odds-ratio distribu-
tions at various study sizes. For instance, if a study had 500 cases of each subgroup, and 95% of ’true’
odds ratios (corresponding to population MAFs) for SNPs in category 3 were less than 1.5, the expected
value of 7 (the standard deviation of Z scores for SNPs in category 3) would be 2.66.

We compared the observed distributions of PLR from simulations with the observed distribution
of ¢cPLR from simulation Q-Q plots are shown in figure The distribution of cPLR agrees well

25
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with a mixture-x? distribution, as does the distribution of PLR for simulation The distributions of
PLR for simulations are minorised by the distribution of cPLR, more so for simulations (t=1),
leading to a conservative test overall. Using cPLR to fit a null distribution, and using a significance cutoff
p < 0.05, leads to a false-discovery rate of 0.048 (95% CI 0.039-0.059) in subgroups with 7 > 1 and 0.033
(95% CI 0.022-0.045) in subgroups with 7 = 1.

We also show the distribution of unadjusted PLR (uPLR) for simulations [lal and The distribution
for markedly majorises the mixture-x? distribution, and has a very different distribution to that for
Thus, if a test subgroup with 7 >> 1 was compared to random subgroups using unadjusted PLR, the
test would have very low power to reject Hy. Finally, we plotted the estimated null distribution for all
tests of real disease datasets, and found that the empirical distributions of cPLR, from random subgroups
agreed well with the proposed mixture x? distribution (Supplementary Figures .
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Figure 3.1: Q-Q plots comparing distributions of PLR and ¢PLR for subgroups based on simulated
genotypes with a random variable distributed as %(X% + x3) (that is, v = k = %) In both plots,
the black points correspond to conditional PLR (cPLR) values for 'random’ subgroups (7 = 1). The
observed distribution is well-approximated by the asymptotic mixture-x2. The left-hand plot shows the
distributions of unadjusted and adjusted PLR for subgroups with 7 = 1. The distribution of unadjusted
PLR markedly majorises the mixture-x?, but the adjustment largely fixes this. The right-hand plot
compares the distribution of cPLR for random subgroups with PLR for subgroups with 7 > 1. The
distribution of ¢cPLR is well-approximated by the mixture-y? whether 7 = 1 (black) or 7 > 1 (red). In
both plots, the distribution of cPLR and the mixture-y? distribution slightly majorise the distribution of

PLR, leading to a conservative test.

3.2 Simulation on GWAS case group subgroups

To check the extensibility of these results to real data, we performed a similar set of simulations on data
generated from subgroups of an ATD case group. In order to simulate scenarios in which 7 > 1, we
selected subgroups for which groups of ~ 50 SNPs differentiated subgroups without being associated with
the disease in general.

Specifically, we repeatedly polled the overall dataset for sets of 2000 SNPs in linkage equilibrium,
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then clustered them hierarchically using a Fuclidean distance metric. We then chose the first-appearing
cluster of 50 SNPs, and hierarchically clustered the individuals in the case group according to a metric
based on similarity across the 50 SNPs. When there were two clusters of individuals left, we denoted the
two clusters as subgroup 1 and subgroup 2. The mean resultant fitted value of 7 was ~ 5 and standard
deviation of fitted values was ~ 1.5.

For simulated subgroups with 7 = 1 (randomly chosen) and with 7 > 1 we computed PLR and
cPLR. As for simulated genotypes, the resultant distributions showed good agreement with the proposed
mixture-x? distributions (figure , with the approximation of the null distribution of PLR with the
distribution of cPL R again leading to a conservative test, as expected. The type 1 error rate corresponding
to a = 0.05 was 0.52 (95% CI 0.043-0.061) in subgroups with 7 > 1 and 0.012 (95% CI 0.007-0.016) in
subgroups with 7 = 1.

w )
o Conditional, t=1 - -
o Adjusted, t©>1 -
c 2 Adjusted, T=1 P
I
D_ rd
[&]
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Figure 3.2: Comparison of distributions of PLR and ¢P LR for subgroups of an ATD case group, chosen so
7 =1 or 7 > 1. The distribution of cPLR for random subgroups (7 = 1) and the distribution of PLR for
subgroups with 7 >> 1 are both well-approximated by a random variable distributed as %(X% + x3); red
dashed lines show 99% pointwise confidence intervals. The distribution of PLR when 7 = 1 is minorised
by the mixture-y? leading to a conservative test if a subgroup with 7 = 1 is tested using PLR against
the observed distribution of cPLR for random subgroups. Because 7 = 1 implies no genetic difference

between subgroups, this is reasonable behaviour for the test.

3.3 Distributions of parameter values for simulation and power calcu-
lations

We assume a distribution of summary statistics parametrised by six variables: 71, ma, 09, 03, 7, and p (the
value of 73 is determined by m; and 7). The space of all parameter values is too large to meaningfully
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assess performance of our test across it, so for each simulation, we draw the value of underlying parameters
from sets of potential values chosen to reflect values which may arise in real data.
For a SNP S in two groups of size ny, ng, denote the population allele frequencies as p1, po and the

corresponding observed allele frequencies as my, mo. Set pu = %ﬁgm as the overall observed MAF,

r = log (Z;Et:ﬁ;) and R = log (%) as the 'underlying’ and observed log-odds ratios respectively.

To first order

1 1 1 1
SE{R} = \/ +3 + +

2m1n1 1 — m1 ni 2’m2n2 2(1 — mg)ng

ﬁ VESHRS 3.)

The observed Z score is, to first order, Z = SE( IOk Now

21(1 — p)nany
E(Z|p,r) = Tnz

D(Z|p,r) =1 (3.2)

Consider 7 as a N(0,0?) random variable, and fix u. Now, to first order

21(1 — p)o?
Z|MNN<0,1+ & “)0"1"2) (3.3)

ni + ng

Assuming p to have an approximately uniform distribution on (0, 0.5], this gives

02n1n2
Z~N[014-——12_ 3.4
( 3(nq +n2)> (3-4)

An interpretable description of the underlying odds-ratio distribution is the 0.975 quantile of ‘true’ odds
ratios (approximately 2 standard deviations). If 97.5% of ‘true’ odds ratios r fall in [1/a, a], then o ~ %
and the expected value of the corresponding observed standard deviation of Z (that is, o9, 03, or 7) is

\/ | 4 logla)*mins (3.5)

12(77,1 + TLQ)

Some examples are shown in table
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Study size (n1/ ng)
a SD | 100/100 100/500 500/500 500/1000 1000/1000 2000/2000
1.1 0.05 1.02 1.03 1.09 1.12 1.17 1.32
1.2 0.09 1.07 1.11 1.30 1.39 1.54 1.94
1.3 0.13 1.13 1.22 1.56 1.71 1.97 2.60
1.5 0.20 1.30 1.46 2.10 2.36 2.80 3.83
2 035 1.73 2.08 3.31 3.79 4.58 6.41

Table 3.2: Correspondence between odds-ratio distribution and standard deviation of observed Z score
for various study sizes. Column « is the 97.5 % quantile of population odds-ratios for SNPs with non-zero
effect sizes (approximately two standard deviations). Column SD is the corresponding standard deviation
of the underlying log-odds ratio distribution (assumed to be normal). Entries in the table correspond
to expected standard deviations of observed Z scores; that is, o9, o3 or 7. We allow different odds-ratio
distributions between cases and controls for SNPs in categories 2 and 3 (corresponding to o2 and o3
respectively). For oy or o3, nj is the number of cases and ng the number of controls; for 7; n; and ny are
the number of cases in each disease subgroup.
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Note 4

Genetic correlation as an alternative to
PLR test

4.1 Overview

The presence of genetic heterogeneity between disease subgroups could be tested for by adapting several
known methods, although to our knowledge no specific method has yet been developed. One potential
approach is to estimate the narrow-sense genetic correlation (r4) across a set of SNPs between case/control
traits of interest, either between Z scores derived from comparing the control group to each case subgroup,
testing under the null hypothesis r; = 1 (method 1); or between the familiar Z, and Z;, under the null
hypothesis 7, = 0 (method 2).

This approach should have the advantage of characterising heterogeneity using a single widely-interpretable
metric. However, both methods have, in our naive application, have multiple shortcomings which pre-
clude their general use to subgroup testing. The most important of these are systematic false-positives
arising in method 1, and false-negatives arising in method 2. We demonstrate this theoretically and in
simulations. In addition, genetic correlation is a signed test statistic; genetic effects in the same direction
contribute positively, and opposite directions contribute negatively, causing a loss of power in situations
where pleiotropy between the phenotypes involves shared effects of both types. Finally, we found that
tests involving r, were less powerful than the PLR in rejecting the null hypothesis in real genetic data
(ATD; GD vs HT).

Genetic correlation is an estimate of the similarity in genetic basis of two traits. A useful formal
definition is given by Bulik-Sullivan et al [2]. Let S be a set of SNPs and X denote a vector of additively
coded genotypes (0, 1 or 2) for a random individual at the SNPs in S. For traits Y7, Y5 set

t
B = arg max,egis |q/|=1 cor(Yy, X'a)

Y = arg max,cglsi |jo)|=1 o (Y2, X'a) (4.1)

where the maximum is taken across the entire population. The genetic correlation between traits across
SNPs in S, 74, is then given by
_ B _ S B
rg = = Bivi (4.2)
I =

4.2 Method 1: control-subgroup 1 vs control-subgroup 2

4.2.1 Expected behaviour

We firstly consider method 1. In this approach, we consider two case-control comparisons:

31



32 NOTE 4. GENETIC CORRELATION AS AN ALTERNATIVE TO PLR TEST

1. Case subgroup 1 vs control group

2. Case subgroup 2 vs control group

We denote Z scores derived from GWAS p-values comparing between controls and subgroup 1 by
Zy1 and scores between controls and subgroup 2 by Zs (figure . An estimated genetic correlation
significantly less than 1 (or at least significantly less than estimates from random subgroups) may indicate
different causative architectures for the subgroups, in the form of differing relative effect sizes for disease-
associated variants.

However, using this method will not distinguish between different disease-causative architectures and
genetic differences between subgroups unrelated to the overall phenotype. In terms of the parameters of
our three-categories model, method 1 will be liable to reject the null whenever 7 > 1, regardless of whether
o3 > 1 (that is, regardless of whether subgroup-differentiating SNPs are in general disease-associated).
Indeed, for a set value of 7, the negative contribution of SNPs in group 3 to the observed r, will often be
maximised when Hg holds; that is, o3 = 1.

Consider a SNP in category 3. Under a simple model in which case subgroups are the same size, we
denote by u. the population MAF of the SNP in controls, and u; and uo the population AF of the same
allele in cases. To first order 77 o« 1 — pe and Zs o< po — pe. Assume 1 — po is set at some constant
m > 0. Because m > 0, the SNP is associated with at least one of the subgroups, and hence contributes
to the genetic correlation. The value of this contribution to the correlation is proportional to Z; Zs, which
is proportional to (1 — pe)(p2 — pc)-

This is minimised when p. = %(Nl + p2). This is exactly the scenario in which the genetic subgroup
differences are unrelated to the phenotype as a whole. In other words, dividing the case group on
an arbitrary genetically-associated phenotype (ie hair colour, ethnicity, presence of a second unrelated
disease) would lead to a lowering of r, more than would a differential disease process with the same

heritability (figure [4.1)).

4.2.2 Simulations

We demonstrated this on our ATD dataset by using the subgroups generated under Hy as in simulation[15]
(see section . These subgroups had a true value of 7 greater than 1, but o3 =1 and p = 0.

For each simulated subgroup, we computed the genetic correlation between the two studies using two
methods - LD score regression (LDSC) [2] and genome-wide complex trait analysis (GCTA) [3] - and
computed our PLR statistic. We also computed genetic correlation and PLR scores for multiple random
subgroups of the ATD case group. Significance of the genetic correlation was assessed by either comparing
the observed rgy to the values observed in random subgroups (LDSC) or comparing the likelihood of the
observed data with an alternative model in which r, = 1.

As expected, ry estimates using both methods were markedly lower in subgroups with simulated
genotypic differences than they were in random subgroups (figure . In the LDSC method, a cutoff of
p < 0.05 led to rejecting the null in of 45% (SE 2%) of cases, and in GCTA in in 29% (SE 5%) of cases.
The PLR method did not reject the null more often than expected, rejecting the null in 4% (SE 1%) of
cases.

4.2.3 Application to real data

We also used both LDSC and GCTA to test the hypothesis of differential genetic architecture in GD and
HT. The GCTA method was unable to reject the null hypothesis (p = 0.217), using a likelihood ratio test
against a null model with r4 = 1. The LDSC method was able to reject the null at p < 0.05, though not
at the same significance as the PLR (LDSC: p = 0.012, PLR p = 2.2 x 1071%). This suggests that the r,
based methods are less powerful than the PLR in this context. This is likely due to the PLR responding
to an additional degree of freedom (o3) between the null and full models.
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4.3 Method 2: Z; (case vs control) vs Z, (subgroup 1 vs 2)

4.3.1 Expected behaviour, and relation of p, to p

In method 2, we consider the two case-control comparisons:

1. Combined case group ws control group

2. Case subgroup 1 wvs case subgroup 2

analogous to our approach in the PLR method, with the two comparisons corresponding to Z, and Zy4
respectively. We estimate ry between these two traits, and test against the null hypothesis that ry, = 0.

The value of ry relates to the estimated value of py in our full model. For a set S of disease-associated
SNPs with additive (non-epistatic) effects in linkage equilibrium, and a binary trait y, we have

cor(y, X'a) = ZCOT (y, i X;) Zazcor (y, X (4.3)

€S €S

This is maximised when «; o cor(y, X;). If (i) denotes the AF of SNP ¢ in S amongst the population
with y = 1, po(é) the corresponding pi.(i) the overall AF of SNP ¢ and p the incidence of the trait in the
population (that is, Pr(y = 1)), we have

N — p (i) — po(2)
cor(y, X;) = v/2p(1 \/uc T ) (4.4)

Given observed allele frequencies my(i), mo(i) at SNP ¢ in a GWAS between traits 1 and 2 with n; and
ng samples respectively, the Z score for significance of that SNP is

N ma(i) —mg(i) i (3) — (i)
2(0) = 00 O i) — o))

m1(> mO(Z) ) 2

+ O((ma(§) — mo(i 45

\/ml z)(1 mi(@) | mo(i)(1-mo(i)) ((m1(2) 0(4))7) (4.5)

no
SO 1 1 ”
. Z o —
lim () ey — VAT (46)
|1 —pio|—0

Amongst SNPs in LE with small effect sizes (u; — po small), expression is maximised for o; o
limy,, ny—oo Z (7). If we denote by Z1;, Z2; the GWAS Z scores for SNP 7 in phenotypes 1 and 2 respectively
in studies with all group sizes ©(n), the genetic correlation between the phenotypes is

> Z1iZoi
rg ~ lim €5 (4.7)
n o0
Y Iy Z
€S €S

The sum is over all SNPs S, but the only SNPs with non-vanishing contributions to r, are those which
are associated with both phenotypes. For the two traits in method 2, these SNPs are exactly those which
are in our (idealised) category 3 in our full model. Writing C; as the category of the SNP i we can rewrite

the above as
rg ~ lim €8 (4.8)

e Z I(Cz‘ = 3)212i Z I(Cz‘ = 3)2221'
i€S i€S
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for which an obvious estimator is

Z PT(Cz = ?))ZlZZQZ
T’Ag = €S (49)
Z P’I“(Cl = 3)Z12i z P’I”(CZ = 3)2221'
€S €S

If we were to define our full model such that Z,, Z; for SNPs in category 3 were distributed as a single
bivariate Gaussian distribution with covariance p’ (as opposed to our current model of two symmetric
Gaussians), the updating step for p in the E-M algorithm would have a similar form. Indeed, if ©,,_; is
the set of estimates for {m, 7o, 09, 03,7, p'} after step n — 1 of the E-M algorithm, the updating steps for
o, T, o3 are

Z PT(CZ = 3’@n_1>Za(i)Zd(i)

(o) & * S PriCi=36,1)
zz;(ci = 3]On-1)Za(i)?
(73)n ieszs Pr(C; = 30,_1)
ZZ;T(CZ- = 3|0p-1) Za(i)?
(T iesz Pr(C; = 3[0,_1) 1
ics

and hence when the E-M algorithm converges, p’/(o37) is an estimator for r,. Testing ry # 0 in this
scenario is broadly equivalent to testing whether p’ # 0 in the adapted full model.

When developing the PLR method, we chose not to use this simpler model, opting for a more complex
two-Gaussian distribution of (Z,, Z;) for SNPs in category 3. There were several reasons for our choice.
Importantly, p’ # 0 implies p > 0, so the test ry # 0 tests a more specific proposition than the PLR.

Testing for p’ # 0 or r4 # 0 is weakened when Z, and Z; are correlated at some group of SNPs
and anticorrelated at others. We note that this simultaneous correlation and anticorrelation is likely in
many biological scenarios. Given two disease subgroups 1 and 2, deleterious variants associated only with
subgroup 1 will have correlated Z,, Z; values, whereas deleterious variants associated only with subgroup
2 will have anticorrelated Z, and Zj.

In addition, the presence of between-subgroup heterogeneity, as characterised by the presence of SNPs
with simultaneously high |Z4| and |Z,| values, does not require that Z, and Z; have to be correlated
or anticorrelated at all. The presence of a set of SNPs whose marginal variances of Z, and Z; are
simultaneously significantly larger than 1 is sufficient evidence for heterogeneity of disease basis. This
was the impetus for including the additional parameter o3 in the full model.

Uncorrelated Z, and Z; may well occur in situations where the main sources of variation between
the subgroups are only weakly associated with the overall phenotype, while less associated variants are
strongly associated. This would be expected to occur in situations where the subtypes have known
genetic differences. If, for example, a subgrouping phenotype was based on visual acuity in the phenotype
of symptomatic Type 2 diabetes, variants associated with general macular degeneration would have large
|Z4| scores with low |Z,| scores, while variants associated with microvascular glucose sensitivity would
have larger |Z,| scores and smaller (but still overdispersed) |Z;| scores.

The behaviours of r4/p’, p, 7 and o in various scenarios are summarised in supplementary table
Overall, we consider that while p, is a useful statistic, it does not capture the variety of forms that disease
heterogeneity can take.
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4.3.2 Simulations

We tested the ability of GCTA to reject the null hypothesis r, = 0 on simulated data. We simulated
genotypes for 4000 controls and 2000 cases in each of two subgroups at 10000 SNPs in linkage equilibrium.
Genotypes were simulated in such a way that Z, and Z; scores would have the distributions

<§d> N <<g) | (é (1)>> at 7000 SNPs (m; = 0.7)

<2) N ((8) | ((1) 2)) at 2000 SNPs (73 = 0.1)

<§Z> N <<8> | (i Z)) at € + 1000 SNPs (73 = 0.2)
0

<§d> ~ N <<0> ) <_4p _4p>> at (1 — &) % 1000 SNPs (73 = 0.2)

The value £ represents the degree to which Z,, Z; scores can show both correlation and anticorrelation,
and p represents the extent of the correlation/anticorrelation. We ran simulations at p = 0 and for
p € {0,0.5,1,2} for £ = 0 (no anticorrelation), { = 0.2 (mostly correlation, some anticorrelation) and
¢ = 0.5 (equal correlation and anticorrelation). The large value of w3 was to ensure that both PLR and
GCTA should be well-powered to reject the null hypothesis where able, but not so well-powered as to be
incomparable.

We estimated r, using the GCTA method [3]. Significance was assessed using the provided likelihood-
ratio test comparing the fitted model with a null model in which r, = 0.

We did not test LDSC in this scenario, as it estimates ry based on phenomena arising from the LD
matrix, and simulation would entail setting an inherent effect size for these phenomena through specifying
an LD matrix. Since the shortcomings we identify are with the use of r, itself, rather than the method
used to simulate it, we considered this reasonable.

As expected, the test based on 7, = 0 was not able to reject the null hypothesis when p = 0 or £ = 0.5,
and power was markedly reduced when some anticorrelation was present, at £ = 0.2 (figure table .
While the test was able to systematically reject the null hypothesis when & € {0,0.2}, p > 0, the power
was universally lower than that of the PLR test (table . This was likely due to information gained
from the additional degree of freedom (o3) between the full and null models in the PLR test. We did not
simulate any scenarios where o3 = 1, as this would imply that SNPs in category 3 were not systematically
associated with the subgrouping phenotype, and hence correlation with Z, would be spurious.

4.3.3 Application to real data

Finally, we assessed whether we could reject Hy by testing against 7, = 0 on our ATD dataset (MHC
removed), with subtypes GD and HT. We used both the LDSC and GCTA methods to do this. While
both were able to reject the null hypothesis (LDSC: ry = —0.579, p = 0.04, from known null distribution
of pg; GCTA: ry = —0.580,p = 1 x 1073 from likelihood-ratio test) neither could do so as confidently as
the PLR test (p = 2.2 x 10719).

Our proposed test is complex, and parametrises disease heterogeneity using several variables (namely
73, 03, T and p) rather than providing a single metric. We consider this complexity to be necessary;
heterogeneity in a phenotype can arise in many ways and the heterogeneous genetic architecture can take
many forms. A test specifically to detect SNPs with large, genome-wide significant effect sizes in one
disease subgroup but not the other may miss heterogeneity characterised by subtle effect size differences
across many SNPs with small effects. Our method can ideally detect heterogeneity in a general sense in
multiple situations, and give insight into the architecture in the form of the fitted parameters.
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p ¢ || GCTA PLR
0 0 | 0.09(0.002)|1()
0 021 0.12(0.002) | 1(-)
0 05| 0.06(0.002) | 1(-)
05 0 | 0.55(0.006) | 1 (-)
0.5 0.2 | 0.13 (0.004) | 1 (-)
0.5 0.5 | 0.06 (0.001) | 1 (-)
1 0 | 0.96(0.002) |1()
1 021 0.59 (0.005) | 1(-)
1 05 0.07(0.002) | 1(-)
2 0 |[1() 1(-)
2 021 1() 1(-)
2 0.5 0.04(0.001) | 1(-)

Table 4.1: Power of tests to reject the null hypothesis at @ = 0.05 in simulated data. Brackets show
standard error. Value p is the degree of correlation/anticorrelation between Z; and Z,. Value £ is the
degree of split between correlation and anticorrelation; & = 0 corresponds to correlation only, & = 0.2
to mostly correlation with some anticorrelation, and £ = 0.5 to a half/half mix. Testing for subgroup
heterogeneity using GCTA is adequately powerful when correlation p is present, but declines markedly
when both correlation and anticorrelation are present, and is effectively zero when p = 0.5 or p = 0. The
PLR-based test was able to reject Hy universally in all cases.
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Case subgroup 1

Case subgroup 2

Figure 4.1: One way to test for phenotypic heterogeneity using genetic correlation (r,) is to estimate r,
for two separate case-control studies; each comparing the control group to one of the disease subgroups,
and test whether the estimated r, is significantly less than 1. We denote by Z1, Z> the sets of Z- scores
corresponding to allelic differences between controls and cases of subtype 1 and between controls and
cases of subtype 2 respectively (top panel) in contrast to our usual Z, and Z; scores. A shortcoming
of this method is that 7, is decreased by the presence of SNPs which show allelic differences between
subtypes, but are unrelated to the phenotype overall. In this sense, the test ry < 1 is responsive to any
genetic difference between subtypes - not just those which correspond to differing disease pathology. This
scenario would arise if subgroups were defined based on a phenotype with non-zero heritability which
was unrelated to the disease; eg, subgroups of T1D defined by hair colouring. The lower two panels
demonstrate this scenario. The left panel shows (simulated) Z, and Z; scores for a set of SNPs under Hy,
where grey corresponds to category 1, red to category 2, and blue to category 3. The right lower panel
shows the corresponding sets of Z; and Z, values. SNPs in the grey circles, and generally SNPs coloured
blue, will contribute negatively to the overall genetic correlation, which is asymptotically proportional to
the sum of Z; Z5 over all SNPs coloured red or blue.
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— Simulated difference
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0.0 0.5 1.0 1.5 2.0

Estimated genetic correlation

Figure 4.2: Density of estimated r, (LDSC method) for method 1. Estimates for random subgroups
generated under Hy are shown in black. Estimates for subgroups with a simulated difference (7 > 1) are
shown in red. A test based on method 1 would reject Hy if 7, was significantly less than 1; however, as
the plot shows, this would lead to systematic false positives in the scenario where 7 > 1. Some estimated
values of r, are greater than 1 due to the way the statistic is estimated under the LDSC method.
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P values (GCTA), sorted

Relative rank

Figure 4.3: Sorted p values from test of null hypothesis r, = 0 under simulations in which p € {0,0.5,1, 2}
and & € {0,0.2,0.5}. In all simulations, Hy is false (with o3 > 0). GCTA is able to reject the null
hypothesis only if p > 0 and p # 0.5, and power is reduced (ie, p-values are higher) if p = 0.2 compared

top=0. If p =0 or £ = 0.5, the p-values show effectively no deviation from U(0,1). Thus a test based
on rejecting p, = 0 is not suitable for our purposes.
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Note 5

Other

5.1 Alternative test statistics for retrospective single-SNP analysis

We propose four summary statistics for testing the degree to which single SNPs have differential effect
sizes in disease subgroups. The fourth of these, the Bayesian conditional false discovery rate (cFDR) is
discussed in the methods section of the main text. The three alternative statistics (which we term X,
X9, X3) test against slightly different null hypotheses.

The first, X1, is the posterior probability of membership of the third category of SNPs under the
full model; that is, for a SNP of interest with Z scores z,, zq and given fitted parameters ©; =
{m1, w2, T3, 09,03, T, p}:

X1 = Pr(SNP € category 3|01)

1
s N N
573 ( 07(;2 ;2)(2'0,,25[) + 07(12 75) (Za, Zd)>
= 3 P (5]‘)

PDFg,(za, 24)

This test statistic has the advantage of straightforward FDR control against the null hypothesis Hy =
{SNP € category 1/2|01}, assuming the validity of ©;. It also reflects the overall shape of the distribution.
A disadvantage is the dependence on the model implied by O1; in circumstances where o3 >> o9, the test
statistic X1 will be high for high values of |Z,| even when |Zg]| is low (supplementary figures [7). This is
a particular problem if tested regions include very strong associations; for example, the MHC region in
autoimmune phenotypes.

Our second statistic, Xs, is the difference in pseudo-log likelihood of a given SNP under the full and
null models; that is, given fitted parameters ©1 under H; and ©g under H

Xo =log{PL(zq, 24|01)} — log{ PL(2q, 24|©0) } (5.2)

This has the advantage that high values of Xs directly identify the SNPs contributing to a higher pseudo-
likelihood ratio. A disadvantage is the sensitivity to the behaviour of the fitted parameters under Hy,
which may be variable (see main paper, results section, page [7| and table , and absence of direct FDR
control. Because X; and X5 tend to highlight uninteresting SNPs in differing circumstances, we found a
combination of both to be useful to find SNPs which are 'unusual’ (high X;) and contribute to the PLR
(high X5).

The third test statistic is defined as X3 = zg‘zclfo‘, a € (0,1). We chose this test statistic as we are
broadly searching for evidence of correlation between Z, and Z;, and SNPs contribute to measures of
correlation principally through the value of Z,Z;. This test statistic identifies SNPs with concurrently
high Z, and Z; in an obvious way, so is of most use when SNPs which differentiate subgroups are not of
interest unless they are also associated with the overall phenotype.

41
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The value of « is set in order to prioritise SNPs with high Z; over those with high Z,; for instance,
with a = 0.5 will give equal weight to a SNP with Z, = 10, Z; = 1 and a SNP with Z, = 1, Z; = 10, but
in general the second SNP will be of far greater interest. To determine the best value of a, we consider
how much we may expect Z, and Z; to deviate from 0, using both the full and null models.

We set 7/ as the largest value of 7 across both models, and ¢’ as the largest of oy (null model) and
o9, o3 (full model). Given fitted values 7/, o/, we suggest the value

_ log(o”)
log(7") + log (o)

(5.3)

so that the statistic X3 has the same value at the points (1,7’) and (¢’,1). The rationale for this is that

SNPs which have the true underlying distributions N o (le 0) or N o (1 0 ) are uninteresting; we seek
o 1 '\ 0 0”2
deviance from both of these distributions. A hypothesis test for X3 can then be computed, using the

appropriate values of (1 ).
Contour plots of the test statistics for several datasets are shown in supplementary figures

5.2 Independence of PLR distribution on subgroup sizes

PLR and cPLR values for randomly chosen subgroups are all derived from data with the same Z, values,
with the distribution of Z; expected to be N(0, 1) and independent of Z, regardless of the relative sizes of
random subgroups. Therefore we expect that the asymptotic distribution (main paper, equation [2| does
not depend on relative subgroup size. An important consequence of this is that if several subgroupings of
a phenotype are being simultaneously assessed, the empirical distribution of cPLR need only be calculated
once.

We demonstrate this assertion by simulation. Using our autoimmune thyroid disease dataset, we
simulated random subgroups from the combined case group (GH+HT) for a range of relative sizes,
repeating the simulation 1000 times for each subgroup size. Figure shows the observed distributions
of PLR and cPLR as compared to the overall distribution. These plots are consistent with independence
of empirical PLR and cPLR distributions on subgroup size.

5.3 Number of simulations necessary to fit null distribution

We assessed the number of simulated random subgroups required to estimate the parameters v, k of
the null distribution of the cPLR. We took bootstrap samples of various sizes from our list of simulated
random subgroups (7 = 1) of the ATD data. For each sample, we computed the fitted values of v and
and the observed p-values associated with observed PLR values of 2, 3, 5, and 10, i.e. expected p values
0.08, 0.03, 0.004 and 1.5 x 107% respectively (figure

This suggests that 1000 simulations is generally adequate, and it is difficult to improve accuracy
markedly past this point. For this number of simulations, 95% of computed values for x, v, Pr(PLR >
2|k,~) and Pr(PLR > 5|k, ~) were in [0.44, 0.56], [0.46, 0.72], [0.069, 0.97] and [0.0021, 0.0057] respectively.
As expected, consistency of p-value estimates is poorer for lower p-values, as these correspond to greater
extrapolations of the distribution.
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Figure 5.1: Distributions of PLR and cPLR for various relative sizes of subgroups. Simulations are on ATD
data. Legend shows the proportion of cases in the smaller subgroup. Leftmost plot shows distribution of
observed c¢PLR, rightmost distribution of PLR. Red dotted lines show empirical 99% confidence limits.
Distributions are similar for all relative subgroup sizes.
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Figure 5.2: Distributions of estimated parameters v and s and various corresponding p-values, using
various numbers of simulated random subgroups. Blue lines show quantiles of observed distribution
corresponding to +2c; red lines show quantiles corresponding to +o. Errors in v and k are shown as
percentage errors as compared to median. Errors in p-values are shown as logig fold changes from median.
Values of the median value of each variable are shown. Observed values are shown as grey dots.
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Figure 1: Top plot shows Z; scores arising from geography-based subgroups compared
with expected normal. Leftmost plot shows quantiles of Z scores from geography based
subgroups; two-region subgroups in light grey and one-region subgroups in dark grey.
Considerable inflation is seen compared to Z-scores arising from random subgroups, in
rightmost figure.
Lower plots show distribution of cPLR values from random subgroups against observed
PLR values from geographically-defined subgroups. Leftmost plot shows cPLR values from
random subgroups plotted in ascending with PLR values from random subgroups shown in
blue. Rightmost plot is Q-Q plot comparing null cPLR distribution with the asymptotic

mixture-y



S 0
MG
d
4 o
o o0 <
S
- e Rand. (cPLR) f"" L’ e Rand. (cPLR)
| e Geog. (PLR) £ L e Geog. (PLR)
& © 8 T G @ - Mix. 5
(3] Vs L - 0(3
~ _ rd E
G < -7 T N
o Al
(9] ” L4
ST /” - -
o - o —
I I I I I I I I I I I
0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0
Quantile in mixture 2 Relative rank

Figure 2: Summary of test statistics (PLR) from geographically-defined subgroups, based
on WTCCC data [I] for controls and type 1 diabetes (T1D). In each instance, one subgroup
was defined as the controls coming from either one or two geographic regions, and the other
subgroup as the controls coming from the remaining nine or ten geographic regions. We also
generated > 2000 randomly allocated subgroups and computed the cPLR. The left panel
shows a Q-Q plot of cPLR values from random subgroups against the asymptotic mixture-
x? distribution, with blue points representing the PLRs of geographic subgroups. The right
panel shows cPLR values plotted in ascending order with the PLR values from geographic
subgroups included as blue points. The minimum Bonferroni-corrected empirical p value
was > 0.5
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Figure 3: Estimates of power for various values of 73, o3, 7, and p. The value N is the

approximate number of SNPs in category 3, corresponding to 3. In total, each simulation
was on 5 x 10 simulated autosomal SNPs in linkage equilibrium. The value p/(o37) is the

correlation (rather than covariance) between Z, and Z; in category 3.
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Figure 4: Q-Q plot of the distribution of observed test statistics (cPLR) for random sub-
groups of tested phenotypes (T1D/RA/T2D combined, GH/HT combined, T1D) against
a mixture x? distribution of the form « * (kX3 + (1 — x)x3). A 99% confidence interval is
shown by the dashed red lines. The distribution is well-approximated by the asymptotic
mixture-y? in all cases.
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Figure 5: Observed Z, and Z; scores (grey) for T1D subtypings based on autoantibody
positivity, including or excluding the MHC region, and contours of parameters of fitted
models (coloured ellipses). Full models are shown for the comparisons involving TPO-
Ab, GAD-Ab, and TA2-Ab, and null models for PCA-Ab (for which the null hypothesis
could not be rejected). Note the differing X-axis scales. The plots illustrate the rationale
for the three-category model; for TPO-Ab, GAD-Ab and [A2-Ab, a tendency is seen for
SNPs associated with autoantibody positivity (high |Z4|) to be associated with T1D also
(high |Z,|). This tendency is not seen for PCA-Ab, and is minimal for non-MHC SNPs in
GAD-Ab. Further analysis of the plot for TPOAD positivity (top left) is shown below.
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Figure 7: We demonstrate all four test statistics for single-SNP effects in the comparisons
betwen T1D/T2D/RA, and between GD and HT (preceding pages). The top 100 SNPs for
each test statistic are highlighted, with larger symbols corresponding to SNPs with non-
zero weights after applying LDAK [2]; that is, the SNPs which contributed to the model
fit. Contours of each test statistic are shown in grey.

Differences are evident in the behaviour of the test statistics X7 and X9 between the two
datasets; X3 and X4 are more robust. The different null hypotheses between X5 and X4
are responsible for the difference in shape near the line Z, = 0. Contours of X, are jagged
due to the dependence of this statistic on the distribution of Z scores.

All methods primarily identified SNPs with both high |Z,| and |Z;| scores as contributors.
As evident from the comparison between GH and HT, the statistic X7 is vulnerable to
falsely declaring SNPs as subgroup-differentiating despite low |Z,| scores (labeled "A’; top
left panel, GD/HT). This arises due to the full model having a markedly higher value of
o3 than o9, leading to SNPs with very high |Z,| values having a high posterior probability
of category 3 membership.

This is partially able to be overcome by combining the test statistics X; and X, into
one, which we typically do by only considering Xs scores in SNPs with X; greater than
some cutoff. However, this is not always effective, as is evident from the above figure for
T1D/T2D. In this case, as discussed in the main paper, almost all SNPs with high Z,
also had high Z;, meaning that the two distributions forming categories 2 and 3 under the
null model were essentially the same. This led to the fitted parameters of the null model
supporting SNPs falling into two distributions; one with identity covariance matrix, and
the other with var(Zy) > 1, var(Z,) = 1 (see fitted parameters).

The different alternative hypothesis for X, (different population MAFs in subgroups with-
out requiring association with the phenotype overall) meant that SNPs with low | Z,| scores
may be identified by X4 in addition to those identified by X, X5 and X3 (contour lines on
bottom right panel, both figures). SNPs which are isolated may be missed by both X; and
X (label 'B’, top two panels, TID/RA), due to the fitted distribution of SNPs in category
3 tending to be driven by clusters of SNPs.

Given these results, we consider X3 and X4 to generally be the most appropriate measure
for single SNP effects, although in appropriate circumstances X can be used alone or
conditionally on X;.
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Figure 8: We assessed the SNPs responsible for the observed difference in pseudo-likelihood
ratio for our analysis of TPOAD positivity in T1D. SNPs in the MHC region were removed
from the analysis (co-ordinates 25-38 Mb, GChR build 37). We combined X; and X5 into
a single test statistic, by only considering SNPs with X; > 0.7 and then considering the
top SNPs for X5. The top ten SNPs for X5|X; > 0.7 (blue, top two panels), X3 (purple,
bottom left panel), and X4 (red, bottom right panel) are shown. Contours of each summary
statistic are shown as black lines. Details of SNPs are shown in the supplementary tables.
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Figure 9: We assessed the SNPs responsible for the observed difference in pseudo-likelihood
ratio for our analysis of age at diagnosis in T1D. SNPs in the MHC region were removed
from the analysis (co-ordinates 25-38 Mb, GChR build 37). We combined X; and X5 into
a single test statistic, by only considering SNPs with X; > 0.7 and then considering the
top SNPs for X5. The top ten SNPs for X5|X; > 0.7 (blue, top two panels), X3 (purple,
bottom left panel), and X4 (red, bottom right panel) are shown. Contours of each summary
statistic are shown as black lines. Details of SNPs are shown in the supplementary tables.

18



References

[1] The Wellcome trust case control consortium (2007) Genome-wide association study of

14000 cases of seven common diseases and 3000 shared controls. Nature 447: 661-678.

[2] Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation

from genome-wide SNPs. American Journal of Human Genetics 91: 1011-1021.

19



A method for identifying genetic heterogeneity within
phenotypically-defined disease subgroups

Supplementary Tables

James Liley, John A Todd and Chris Wallace

November 8, 2016

List of Tables

11

Forms of genetic architecture under different causes of heterogeneity| . . . . . . . . .. ... ... ... ...

Model parameters for autoantibody positivity in T1D| . . . .. .. ... oo oo oo

Model parameters for age at diagnosis in T1D|. . . . . . . . .. .. o oo

Top SNPs differentiating T1D and RA| . . . . . . o . . o o o

Top SNPs differentiating T1D and T2D| . . . . . . . . 0. o o

Top SNPs differentiating T2D and RA| . . . . . . . . . o o oo

Top SNPs differentiating GD and HT subgroups of ATD.| . . . ... ... ... .. ... ... ...

Top SNPs tor TPOAD positivity in T1D| . . . . . . . . 0L o oo

Top SNPs for age at diagnosis in TID| . . . . . . . .. oo o




r§Y)

g3

Phenomenon

>1

Hy: Z4,Z, ~ N(0,13); all-
environmental cause for sub-

group phenotype

<1

>1

Hy: Z4, Z, independent; sub-
grouping phenotype independent

of main phenotype;

1/ <1

>0

>0

>1

>1

Hy: Zy, Z, correlated; eg. same
pathways; different heritability

(age-of-onset)

<1

>0

>0

>1

> 1

Hy: Z4, Z, mostly correlated,
some anticorrelation; eg. most
variants associated with sub-

group 1, some with subgroup 2

<1

>0

>1

> 1

Hy: Z;, Z, both correlated and
anticorrelated; eg. variants ei-
ther associated only with sub-

group 1 or only with subgroup 2

<1

>1

>1

Hy: var(Zg) > 1 and var(Z,) >
1 but not correlated; general
shared genetic architecture be-
tween subgrouping phenotype
and main phenotype, effect sizes

independent




H;: shared genetic architecture
between subgrouping phenotype
<1 0 0 >1 >1 and main phenotype, effect sizes

dependent but not correlated or

anticorrelated

Table 1: Heterogeneity between case subgroups may arise in multiple ways, some of which are illustrated here. Plots show

the distribution of Z; and Z, for SNPs in category 3 (those which differentiate subgroups). Column rél) corresponds to

genetic correlation in method 1 (between Z scores for control vs subgroup 1 and control vs subgroup 2), and column réz)
to genetic correlation in method 2 (between Z, and Z;); see supplementary material, section |4 SNPs in category 1 (not
differentiating cases/controls and not differentiating subgroups) are shown in grey for reference, and SNPs in category
2 are omitted. In the first two rows, the pathology leading to heterogeneity is genetically independent of the pathology
leading to the main phenotype; our null hypothesis. The test Tél) < 1 will reject Hy for the scenario in row 2, as well
as other scenarios. The test rf) # 0 rejects Hy for the scenario in row 3, but is weakened in the scenario in row 4 due
to the anticorrelation, and will not be able to reject Hy for rows 5-7. Since p detects correlation and anticorrelation

simultaneously, it will additionally reject Hy for row 4 and will not be weakened in row 3. However, it is necessary to test

for o3 > 1 to reject Hy for rows 5 and 6.



Model ™ o 3 oo o3 T p p-value

TPO-Ab  Full 0.511 0.487 2407 x 1073 0.994 6.545 1.552 0.991 < 1x 102
Null 0.987 2.333x 1073 0.011 6.634 - 1.308 -

TPO-Ab Full 0.997 2.898 x 10~% 3.031 x 1073 4.698 2.291 1.497 0.338 1.5x 10~ %

no MHC Null 0.989 1.882x 1072 9.087 x 1073 3.11 - 1.318 -

GAD-Ab  Full 0.995 3.557 x 1073  1.057 x 10°3 2.832 8.866 2.295 5.484 <1x1020
Null 0.997 2.328 x 1073 3.002 x 10~* 6.639 - 2.153 -

GAD-Ab Full 0.997 29x107° 3434 x10°% 2279 4531 1.055 3.424 0.002

no MHC  Null 0.792 1.883 x 103 0.206 3.111 - 0.997 -

TIA2-Ab  Full 0.995 3.275x 1073 1.244 x 10~% 2.804 8.291 3.027 1575 <1x10°20
Null 0.997 2.287 x 1073 3.805 x 10~* 6.674 - 3.852 -

TA2-Ab  Full 0.998 1.362 x 103 7.904 x 10-% 3.318 2212 2.145 0 0.008

no MHC Null 0.998 1.88x1073 2.073x107* 3.112 - 2.889 -

PCA-Ab Full 0.997 2.336 x 1073 3413 x 10-%* 6.631 0.37 2.097 0.422 > 0.5
Null 0.998 2.335x 1073 1.276 x 10~* 6.632 - 2.54 -

PCA-Ab Full 0.997 2759 x 1073 1.303 x 10~%* 2.508 5.58 2.256 0 > 0.5

no MHC Null 0.998 1.884 x 1072 1.384 x 10~* 3.111 - 2.5 -

Table 2: Parameters of models fitted to T1D autoantibody positivity data. With MHC retained (co-ordinates 25-38 Mb,
GChR build 37) all full models fit better than null models with the exception of those fitted to PCA-Ab positivity. With
MHC removed, effect sizes were lower, but the null hypothesis could be rejected for TPOA-AD positivity, with weaker evi-
dence for rejecting the null hypothesis for GAD-Ab and IA2-Ab. In most cases, there was evidence of SNPs differentiating
subgroups (typically, fitted 7 > 1). There were generally a small number of SNPs which strongly differentiated cases and
controls (a small value of my, m3 corresponding to the larger value of o2, 03). P-values were computed against the null
distribution of cPLR for random subgroups, which showed good agreement with the asymptotic mixture-y? distribution
(see supplementary figure ??). P-values shown are unadjusted for multiple testing.

Age Full | 0.898 0.099 24x107% 096 6.558 1.601 3.644 4.9 x 1077
Null | 0.885 2.338 x 10~3 0.113 6.631 - 0.945 -

Age Full | 0.997 1.881 x10~% 3.035 x 10~2 5.257 2.372 1.159 1.315 0.007

no MHC Null | 0.782 1.891 x 1073 0.216 3.107 - 0.97 -

Table 3: Parameters of models fitted to age at diagnosis in T1D, considered as a parameter rather than defining subgroups.
The full model fit significantly better than the null model when the MHC region was included or excluded. Plotted Z,
and Z, scores are shown in supplementary figure ??. The fitted models show evidence of SNPs associated with age at
diagnosis (fitted 7 > 1). P-values were computed against the null distribution of cPLR for random subgroups, which
showed good agreement with the asymptotic mixture-y? distribution (see supplementary figure ?7?).
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