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SUMMARY

Here, with the example of common copy number variation (CNV) in the TSPAN8
gene, we present an important piece of work in the field of CNV detection, that
is, CNVassociationwith complexhuman traits such as 1HNMRmetabolomicpheno-
typesandanexampleof functional characterizationofCNVsamonghuman induced
pluripotent stemcells (HipSci).We reportTSPAN8 exon11 (ENSE00003720745) as
a pleiotropic locus associated with metabolomic regulation and show that its
biology is associated with several metabolic diseases such as type 2 diabetes
(T2D) and cancer. Our results further demonstrate the power of multivariate asso-
ciationmodels over univariatemethods anddefinemetabolomic signatures for var-
iants in TSPAN8.

INTRODUCTION

In humangenetics, the concept of commongenetic variation in commondiseases has been the central tenet

of research for more than two decades. Landmark studies such as the Wellcome Trust Case Control Con-

sortium (WTCCC) analysis of eight common diseases first reported a common CNV (CNVR5583.1, TSPAN8

exon 7 deletion, ENSE00000871916) associated with type 2 diabetes (T2D) (Wellcome Trust Case Control

Consortium et al., 2010). CNVR5583.1 was validated by polymerase chain reaction (PCR) and was found

to have an allele frequency of 36% and 40% for cases and controls, respectively. One of the best tagging sin-

gle-nucleotide polymorphisms (SNPs) for CNVR5583.1 was reported to be rs1705261 with r2 = 0.998 with

highest linkage disequilibrium (LD) among all SNPs. CNVR5583.1, a common exonic variant for controls (mi-

nor allele frequency [MAF] = 40%; highest CNV frequency among all WTCCC disease and control cohorts),

has not been reported or rediscovered in any of the recent large-scale CNV discovery projects. These

include the thousand genomes project (1KG) (n = 2,504), the gnomAD project (n = 141,456), and more

recently the CNV analysis from UK biobank (UKBB) (Aguirre et al., 2019) (n = 472,228). Furthermore, well-es-

tablished longitudinal studies such as the Northern Finland Birth Cohorts (Rantakallio, 1988; Järvelin et al.,

1997) (NFBC) and UKBB (Bycroft et al., 2018) are powerful resources for uncovering the effect of common

genetic variants on quantitative traits and lifestyle phenotypes such as socioeconomic status, medication,

and diet.

Building on the theme of common genetic variants and their role in common diseases and by integrating

insights from current important landmark human genetic resources, our study here exemplifies that com-

mon human genetic variation, in particular common CNVs in the TSPAN8 gene, can play an important and

common role in the pathogenesis of diabetes and cancer. Furthermore, these manifestations are most

likely caused through metabolic dysregulation. Through in-depth gene expression analysis including

from the human induced pluripotent stem cells project (HipSci) and PheWAS results for TSPAN8,METTL7B

(a trans CNV-QTL for TSPAN8), and NKX2-2 (a common transcription factor), we suggest that TSPAN8,

METTL7B andNKX2-2 are expressed in tandem in different tissues of the body in humans and in other spe-

cies and are likely to be linked through molecular functions.
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RESULTS

TSPAN8 CNVs

Here, we have reported the rediscovery of CNVR5583.1 in the 1KG next-generation sequence (NGS) data

for multiple human populations including Finnish (FIN) and British (GBR) populations. Using cnvHitSeq (see

STAR Methods), we report the CNV deletion frequency for CNVR5583.1 in FIN and GBR as 37.7% and 30%,
iScience 24, 102893, August 20, 2021 ª 2021 The Author(s).
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respectively (Figure 1 and Table S1A). Next, guided by the NGS derived CNV breakpoint information for

common exonic CNVs in 1KG data and SNP tagging CNV information (LD) from the WTCCC 16K CNV

study, we identified CNVs in TSPAN8 exon 10 and TSPAN8 exon 11 in two Northern Finland population

cohorts – NFBC 1986 (n = 4,060) and NFBC 1966 (n = 5,240). These two CNV regions lie close to the

most significant SNP associated with T2D in TSPAN8 (Figure 2). LD information from the 1KG data when

juxtaposed on the UKBB PheWAS results (57 million TOPMed-imputed variants in 400,000 British white in-

dividuals) indicate high population specificity (Figure 3). This LD structure in TSPAN8 was more pro-

nounced than that in PCSK9. These results indicate that additional evolutionary, migratory, or human adap-

tation factors are likely to be involved at these genomic loci.

In NFBC 1986, genotyped on Illumina Cardio-Metabochip platform (Voight et al., 2012), we rediscovered

CNVR5583.1 with an allele frequency of�8% (Table S1B) tagged by rs1705261 with r2 = 0.942 (Table S1C). In

addition, a common CNV (MAF �5% in NFBC, 1986 and 1KG FIN) overlapped with exon 11 in TSPAN8

which was found to be in weak LD with CNVR5583.1. The LD results were SNP-CNV r2 = 0.623 and CNV-

CNV r2 = 0.68 (Figures S1A and S1B). PennCNV results for NFBC and other population cohorts seem to indi-

cate undercalling of CNVs in TSPAN8 (Figure S2 and Table S1D).

We highlight that in the public release of CNV data from gnomAD consortium, three common CNV dele-

tions with MAF >5% (MAFs 51%, 26% and 9%) were reported in TSPAN8 but none of these were exonic or

overlapped with CNVR5583.1 or TSPAN8 exon 11 (Table S1E). However, we find that there are marked vi-

sual differences in sequencing depth coverage across TSPAN8 exon 11 and exon 7 (CNVR5583.1), indi-

cating the presence of structural variation in these regions (Table S1F). The 1KG CNV release reported

no common CNVs within the TSPAN8 gene (Table S1G). In the Memorial Sloan Kettering Cancer Center

(MSKCC, url : https://www.mskcc.org/about.) portal for pan-cancer data (The Cancer Genome Atlas

(TCGA) project data included), consisting of �87,000 samples across 287 different cancer types, we

observed that TSPAN8 common germline deletions, including CNVR5583.1, are almost completely

depleted (deletion allele frequency <0.01%). In contrast, in most cancer types where TSPAN8 was found

to be altered�2% of the 87,823 patients (91,339 samples from 287 studies), most patient genomes had am-

plifications with allele frequency >5% (Figure S3). CNV analysis of the HipSci patient germline genomes and

the donor-derived cell lines data indicated a similar pattern. We found TSPAN8 CNV deletions with

MAF �5% in germline genomes (Figure S4), and this was reduced to allele frequency of <0.01% in the pa-

tient-derived induced pluripotent stem (iPS) cell lines.
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Metabolomic signatures of TSPAN8 variants

Metabolomic signatures were obtained by applying univariate and multivariate approaches (Multiphen,

see STAR Methods) using cnvHap-derived CNV genotypes. Across TSPAN8 and within a window of one

megabase around TSPAN8, the strongest CNV-metabolome association signal was discovered within

TSPAN8 exon 11 (chr12:71523134), closely followed by exon 10 and other nearby probes (Figures 4A

and 4B). At chr12:71523134, on meta-analysis (inverse variance fixed effects) of 228 metabolic phenotypes

in NFBC 1986 and NFBC 1966 (n = 9,190), we found the top metabolic phenotype to be HDL_TG (Triglyc-

erides in high-density lipoprotein [HDL], p value = 0.00102, Table S2A iii). In our multivariate signature anal-

ysis, a signature consisting of several subclasses of HDL was found to be associated with multivariate joint

signature with a p value of 0.00368, located at 12:71526593 (Figures 4C and S2A vi). Genome-wide univar-

iate inflation factors for CNV HDL_TG associations were found to be 1.004 and 1.157 in NFBC 1986 and

NFBC 1966, respectively (Table S2B). Using genotyping platform intensity measurement log-r ratio

(LRR)–based association model (association independent of cnvHap genotypes or CNV calling), HDL_TG

replicated in the meta-analysis of NFBC 1986 and NFBC 1966 with a p value of 0.0873 (Table S2C iii). In a

separate British replication cohort (Whitehall), the strongest lipid association signal in the TSPAN8 gene

was observed for HDL lipid at 12:71526064, near exon 10 with univariate LRR p value of 5.02 3 10�6 (Table

S2D i, Figure S5). Across all cohorts and association approaches, the strongest signal in TSPAN8 was found

at chr12:71523134 (exon 11) with a p value = 7.333 10�233 (Table S2C vi) with a metabolomic signature con-

sisting of 27 metabolites. Influence of sex on association results is reported for Whitehall cohort in Table

S2D. In NFBC cohorts, this is reported in Table S2H iii and in Figures S18–S23.

Furthermore, CNV at chr12:71523134 (MAF �2%) exhibited strong pleiotropy with >50% (115/228) of the

metabolites having a significant p value < 0.05 (Figure 5). In contrast, significant SNP association results

at the same position (MAF = 43%) showed pleiotropy of only 2%. In addition, individuals with CNV deletion
2 iScience 24, 102893, August 20, 2021
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Figure 1. UCSC genome browser plot for CNV breakpoints in TSPAN8 (hg19)

CNV breakpoints determined by cnvHitSeq for 1KGNGSdata. Additional annotation for cnvHap-derived breakpoints in NFBC 1986, Illumina Cardio-Metabochip

probe locations, and other publically available published CNVs breakpoints are also marked. The bottom section shows significant eQTL results from the GTeX

project. Of note, significant eQTLs are tissue specific and are concentrated in the downstream regions near TSPAN8 exon 11 and CNVR5583.1.
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at chr12:71523134 had significantly higher levels of metabolite levels, particularly for low-density lipopro-

tein (LDL) and its subcategories (Table S2E). We found 61% (22/36) of LDL and its subclasses had a signif-

icant p value < 0.05 for higher metabolite levels.
iScience 24, 102893, August 20, 2021 3



Figure 2. Regional Manhattan plot

SNP association results for TSPAN8 in T2D DIAMANTE GWAS analysis (N �1 million) obtained from the T2D knowledge portal (url: http://www.

type2diabetesgenetics.org/). Schematic includes epigenetic annotations for transcriptional activity within TSPAN8. Of note, within a window of one

megabase, the most significant SNP association locus for T2D outcome lies near TSPAN8 exon 11 (rs1796330, chr12:71522953, p value = 3.20 3 10�14).

ll
OPEN ACCESS

iScience
Article
We report all univariate and multivariate CNV genotype associations and validation results for all common

and rare CNVs in the TSPAN8 gene with 228 metabolomic phenotypes in NFBC 1986 and NFBC 1966 char-

acterized by nuclear magnetic resonance (NMR) in Tables S2A, S2C, and S2D and their subsections. We

highlight two metabolites of interest from previous genome-wide association study (GWAS) of human me-

tabolome (Suhre et al., 2011; Shin et al., 2014) which lie near TSPAN8 exon 10, namely 1) ratio of 7-meth-

ylguanine to mannose (chr12:71524858, p value = 6.58 3 10�7) and 2) 3,4-dihydroxybutyrate

(chr12:71526064, p value = 7.36 3 10�5 synonym: 3,4-dihydroxybutyric acid) (Table S2F).
Functional characterization and biology of TSPAN8

To understand the function of TSPAN8 CNVs further, we carried out genome-wide TSPAN8 CNV-QTL

(germline CNVs association with iPS cell line gene expression) analysis in human induced pluripotent

stem cells from the HipSci project (Kilpinen et al., 2017). One of the top hits included METTL7B

(genome-wide rank 3, p value = 0.000195, Q value = 0.865, Table S3A). We observe that in addition to these

results, it might be possible to assign a priori assumption for functional relationship between TSPAN8 and

METTL7B based on current knowledge of common transcriptional factors, gene and protein co-expression,

and PheWAS analysis.
4 iScience 24, 102893, August 20, 2021
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Figure 3. LD results from 1KG

Regional Manhattan plot for association of results of SNPs with 1400 EHR-derived broad PheWAS codes from the UK BioBank (n = 400,000 url: https://

pheweb.org/). Results are next stratified by LD results for different population ancestries from the 1KG project. Of note, the LD structure seems to be

correlated with human migration routes from Africa.
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NKX2-2 is a common epigenetic regulator for TSPAN8 andMETTL7B active in adult human pancreatic islets

(Figures 3D and S6, Table S3B). Main evidence of tissue-specific expression for these three genes included

GTEx and Novartis whole-body gene expression maps (Boos et al., 2013) (Figures S7 and S8), significant

tissue-specific SNP-eQTLs (GTEx, Table S3C), eQTL colocalization, and causality results reported by the

T2D knowledge portal (Table S3D), single-cell gene expression databases (Figures 6A and 6B and Tables

S3E, S3F, and S3G), and whole-body gene expression results in mouse (Tabula Muris, Figure S9), Papio

anubis, Ovis aries, and Xenopus laevis (Table S3H). In developing Xenopus laevis, NKX2-2 and TSPAN8

expression seemed to have a positive correlation from Nieuwkoop and Faber (Nieuwkoop and Faber,

1994) (NF) stage 12 to 35-36, but from NF stage 35/36, they become negatively correlated, suggesting

additional transcriptional repression factors in play. Such factors are unknown at the moment and warrant

further investigation (Figure S10).

Thus, combining evidence from multiple databases and publications, we have demonstrated strong evi-

dence of in-tandem RNA and protein co-expression for NKX2-2, TSPAN8, and METTL7B. We further hy-

pothesize that these three genes together are likely to be functionally linked in energy homeostasis and

glucose metabolism in the body through their coordinated action in tissues and organs related to insulin,

hormones, other signaling molecules – 1) production: pancreas, 2) processing: liver and gut, 3) regulation:

brain and central nervous system, and 4) uptake: muscles/other organs.
iScience 24, 102893, August 20, 2021 5
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Figure 4. Metabolomic signatures in NFBC and epigenetic annotations

(A) Metabolomic signatures in NFBC 1986: Heatmap showing association results for TSPAN8 CNV genotypes with metabolomic measurements in NFBC

1986. TSPAN8 exon 11 deletion showing high degree of pleiotropy is marked in red.

(B) Same as 4A, but showing beta values from the association results from A.

(C) Same as 4A) but showing results for MultiPhen reverse regression with variable selection or multivariate metabolomic signature

(D) Epigenetic annotation and T2D trait association: Transcription-factor-binding sites (TFBS) in TSPAN8 determined in the adult human pancreatic islets.

Schematic includes 70KforT2D SNP association results for type 2 diabetes along with regulatory annotations for TSPAN8 (negative HiC results). This

schematic was generated by the Islet regulome browser, url: http://pasqualilab.upf.edu/app/isletregulome with following settings: Chromatin maps:

Pancreatic progenitors (Cebola L, et al., 2015), Enhancer clustering algorithm: Enhancer clusters (Pasquali L, et al 2014), transcription factors: Adult islets –

Tissue specific (Pasquali L, et al 2014) and SNP association results: 70KforT2D.
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The protein structure of TSPAN8 remains unknown at the moment. However, the protein structure of

TSPAN28 which has strong sequence similarity with TSPAN8 (e-value = 2 3 10�38) has been determined

and further shown to bind with cholesterol (Zimmerman et al., 2016) (Figure 6C). Here, we show that

TSPAN8 exon 11 deletion when mapped to TSPAN28 might lie close to the closest cholesterol-binding

pocket, thus opening up the possibility that TSPAN8 exon 11 deletion might have an effect on cellular

cholesterol transport, binding, and metabolism.
Disease, lifestyle, and exposome analysis of TSPAN8, NKX2-2, and METTL7B

Here, we report CNV association with disease outcomes for TSPAN8, NKX2-2, and METTL7B in previously

characterized cohorts, namely DESIR for T2D (Vaxillaire et al., 2008), child obesity cohort (Walters et al.,

2010), and adult obesity cohort (Walters et al., 2010) (Table S4A). LRR-based association p values for these
6 iScience 24, 102893, August 20, 2021
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Figure 5. Pleiotropic nature of TSPAN8 CNVs

Schematic showing pleiotropic nature of TSPAN8 variants (A) CNVs and (B) SNPs in NFBC 1986. Every probe location in the TSPAN8 gene is denoted by a

circle and represents univariate association results for cnvHap genotypes with metabolomic measurements. Size and color of each circle correspond to CNV

allele frequency. Higher allele frequency is denoted by both color (blue to red) and size of the circle. Y axis denotes phenotype count, i.e. the number of

metabolomic phenotypes found associated with given CNV genotype at a p value threshold of �0.05. X axis denotes the minimum p value observed at a

given probe location.
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cohorts for probes in TSPAN8 exon 11 (chr12:7152314) were 0.0651, 0.00305, and 2.573 10�12, respectively.

These results included several genomic loci with significant CNV disease signals.

In NFBC 1986 and NFBC 1966, the top PheWAS traits associated with TSPAN8, METTL7B, and NKX2-2

included insulinmedication, glycemic traits, and smoking (Tables S4B and S4C), while common phenotypes

from the FINNGEN project included T2D, diabetes with coma (both type 1 and 2), neurological complica-

tions, and several categories of glycemic traits (Table S4E). Some common lifestyle and exposome pheno-

types from several public databases and GWAS catalogs included death at home, medication use, body

mass index (BMI), hip circumference, waist hip ratio in females, and balding pattern in males (Figure S11;

Tables S4F–S4K). A common metabolomic signature for CNVs in TSPAN8,NKX2-2, andMETTL7B included

XXL_VLDL_L (total lipids in chylomicrons and extremely large very-low-density lipoprotein [VLDL]) which

was recently reported to be associated with increased all-cause mortality rate in humans (Deelen et al.,

2019). In cancer biology, TSPAN8 has been well characterized and is mainly implicated in cancer hallmarks

related to metastasis and angiogenesis. By comparing and contrasting mutations including CNVs, single-

nucleotide variants (SNVs), and gene expression, with a well-known classic tumor suppressor gene such

asPTEN (Figure S3C), wepropose thatTSPAN8 is likely to be anoncogene, involvedwith cancermetabolism

through CNV amplifications and overexpression. Thus, since TSPAN8 SNVs are quite sparse, TSPAN8CNVs

are more likely to be cancer driver events. Overall survival estimates for patients with overexpression in

TSPAN8 in many cancer types were also found to be significantly lower (Table S4L).

DISCUSSION

Finnish populations are known to be enriched for deleterious variants and hence are likely to be of added

value for understanding molecular mechanisms of common disease such as T2D and metabolic disorders.

Here, we have reported in-depth association analyses of CNVs using univariate and multivariate ap-

proaches in the TSPAN8 gene with 228 circulating plasma metabolites in more than 9,300 Finnish individ-

uals. In our analysis, we have highlighted some important aspects related to CNV detection and association

approaches for cohorts with large sample sizes, commonly characterized through microarrays and NGS

platforms. Some salient points included successful application of ‘population aware’ methods for CNV

detection, application of probabilistic measures for CNV genotypes for improved CNV-phenotype associ-

ations, and leveraging intensity-based approaches for independent validation of CNV-phenotype associ-

ations. We demonstrate that CNVs are prevalent in germline, somatic, and iPS cell line genomes; however,

their characterization, especially determining correct breakpoints and allele frequency, remains
iScience 24, 102893, August 20, 2021 7



Figure 6. Functional characterization

(A) Single-cell gene expression results from the Human Cell Atlas. Correlation of single-cell gene expression data for TSPAN8 andMETTL7B in specific cell

types, namely, ductal cells in the pancreas, hepatocytes in the liver, progenitor cells in the colon, and enterocytes in the ileum. Single-cell gene expression

was obtained from the Human Cell Atlas project and analyzed and visualized through the cellxgene software (https://data.humancellatlas.org/analyze/

portals/cellxgene).

(B) Single-cell gene expression data in the human pancreas. Published single-cell gene expression data showing tissue specificity of TSPAN8 in the ductal

cells of the human pancreas (Single Cell Gene Expression Atlas, Segerstolpe Å, Palasantza A et al. (2016) Single-Cell Transcriptome Profiling of Human

Pancreatic Islets in Health and Type 2 Diabetes.).

(C) 3-dimensional protein structure of TSPAN28: 3D protein structure from protein databank showing a cholesterol-binding pocket in TSPAN28 (PDB: 5TCX).

The closest cholesterol binding site in TSPAN28 is located at VAL 212 (at a distance of 5.4 ångström (Å) from cholesterol). In TSPAN8, amino acid SER 213

maps to exon 11 or chr12:71523134.
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challenging and underexplored. Importantly, approaches for delineating functional impact of bystander

CNVs from real disease-causing pathogenic variants remain limited at the moment. New technologies

based on CRISPR-based genome engineering, long read sequencing, and sequence-guided reanalysis

of published GWAS microarray data sets are some promising leads to address these challenges.

Using a modest sample size of�9,100, our multivariate approach of using all 228 metabolomic phenotypes

in a single model allowed us to pinpoint the most significant and also perhaps the functionally important

region in TSPAN8 located within or near exon 11. In contrast, the multiethnic DIAMANTE meta-analysis for

T2D (Mahajan et al., 2018) reported the most significant SNP in TSPAN8 near exon 10 at 12:71522953 with a

p value = 3.2 3 10�14 using a sample size of �1 million (74,124 T2D cases and 824,006 controls). This result

highlights the power of multivariate metabolomics analysis for genomics and highlights its relevance for

rare variant analysis which usually requires extremely large sample sizes.

In the HipSci data, we rediscovered TSPAN8 CNV deletions in iPS donor genomes with MAF�5% and sub-

sequent CNV-QTL analysis led to the discovery of METTL7B, as a potential new trans CNV-QTL for

TSPAN8. Furthermore, NKX2-2 was found to be a common transcription factor for these two genes active

in pancreatic islets. The initial evidence from the iPS cell lines analysis is suggestive but weak owing to
8 iScience 24, 102893, August 20, 2021
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nonsignificant Q value; however, several additional results from epigenetic and single-cell RNA-Seq data

reinforced our hypothesis that TSPAN8, METTL7B, and NKX2-2 are likely to be functionally linked in a very

tissue-specific manner in humans and other species. This evidence enabled us to build a robust a priori hy-

pothesis for TSPAN8 and METTL7B and gives more weight to the HipSci results. An additional important

result we would like to highlight is the possible involvement of TSPAN8,METTL7B, andNKX2-2 in the PPAR

pathway. To elucidate further, we note that NKX2-2 has been experimentally shown to regulate TSPAN8

and PPARG (Tables S3B and S2). In addition to this, the fact that METTL7B (Synonym: ALDI- Associated

With Lipid Droplets 1 (Turró et al., 2006)) physically co-localizes with PLIN1 on peroxisomes in the cell

cytosol, suggests that the PPAR pathway might indeed be a common denominator (Figure S12).

Another observation we make here is that in addition to strong tissue-specific gene expression in hu-

mans and other species, TSPAN8, NKX2-2, and METTL7B further tend to be expressed in pairs but never

together, i.e. all three genes being expressed in the same tissue is rarely seen. This phenomenon of pair

exclusivity of gene expression was also indirectly reflected through Kaplan-Meier survival curve estimates

for many cancer types (Table S4L). Some highlights of such patterns included pancreatic ductal carci-

noma and kidney cancer, both of which have strong germline tissue expression. One exception to this

pattern was cervical cancer where all three genes were found to be overexpressed. Cervical cancer

has links to human papillomavirus (HPV), and thus, it might be a genuine outlier. However, we caution

that these observations are preliminary and require further experimental investigation before any defin-

itive conclusions can be made.

TSPAN8 and METTL7B both seem to have strong evidence of being involved with obesity. TSPAN8’s role

in obesity is strongly indicated by knockout experiment in mice leading resistance to weight gain

(�15.6%) and also corroborated by our novel association results for child obesity, where we found dele-

tions in TSPAN8 are protective against obesity with an odds ratio of 24.59 (p value = 1.268 3 10�6) (Table

SiL i). METTL7B’s role in obesity is a relatively new observation. Of importance is a recent GWAS analysis

of childhood onset obesity (Riveros-McKay et al., 2019) where the authors reported rs540249707 near

METTL7B to have an odds ratio of 3.6 (95% confidence interval [CI] = 2.13–6.08, p value = 1.77 3

10�6) which was higher than that of the FTO variant rs9928094 with an odds ratio of 1.44 (95% CI =

1.33–1.57, p value = 1.42 3 10�18). Furthermore, METTL7B variants have also been reported as one of

the top hits in GWAS of amphetamine response (Table S4H ii). Although discontinued, amphetamines

are known to be prescribed as antiobesity medication (Ricca et al., 2009) with side effects related to

increased alertness. Whether association of TSPAN8 and METTL7B with obesity, central nervous system,

or other traits is driven by independent molecular mechanisms or through common molecular pathways

is left unvalidated at the moment.

Findings from single-cell data indicate that TSPAN8 is mainly expressed in pancreatic ductal and acinar

cells, thus highlighting its involvement of the neuro-exocrine axis for energy homeostasis and metabolism.

Furthermore, NKX2-2 and TSPAN8 seem to be strongly coexpressed in similar regions of the human brain,

in particular in the midbrain region around the hypothalamus, neural stem, and spinal cord. METTL7B on

the other hand is overexpressed in glioblastoma (Figure S3B). Observations of several fold high expres-

sions for TSPAN8 andNKX2-2 are replicated in the UK Brain Expression Study (Ramasamy et al., 2014) (Fig-

ure S13) and were also reflected through results from MetaXcan, eCAVIAR, and COLOC analysis for

TSPAN8 (Table S3D). These observations for TSPAN8 and NKX2-2 suggest genetic links in the neuro-

exocrine axis for energy and metabolic homeostasis in humans. Our neurological observations are further

intriguing owing to an earlier reported association of TSPAN8 SNPs in exon 10 with 3,4-dihydroxybutyrate

(synonym: 3,4-dihydroxybutyric acid). Butyrate has hormone-like properties and can induce enhanced

secretion of glucagon and insulin (Gao et al., 2009) in the pancreas and has known beneficial effects on in-

testinal homeostasis for energy metabolism via the gut-brain axis (Li et al., 2018). Importantly, 3,4-dihydrox-

ybutyric acid is known to be linked to satiety (Shimizu et al., 1984; Minami et al., 1988) and with ultra-rare

succinic semialdehyde dehydrogenase deficiency (SSADH).

Using principles similar to reverse genetics, through PheWAS and phenotypic trait analysis, we further

strengthen our metabolomic and gene expression findings. One such example is a common metabolomic

signature for TSPAN8, METTL7B, and NKX2-2 CNVs, XXL_VLDL_L, which was recently found to be associ-

ated with all-cause mortality (Deelen et al., 2019). The mortality risk factor is further corroborated by strong

PheWAS signal for traits related to death at home in UK Biobank results which were common for all three
iScience 24, 102893, August 20, 2021 9
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genes and had themost significant p value = 1.873 10�33 for TSPAN8 (Table S4i). Some of the other pheno-

typic traits of interest included high medication use, diabetes with neurological complications, several cat-

egories of glycemic traits, BMI, hip circumference, and fat mass.

Our observations from current scientific literature indicate that all common germline CNV deletions (at

least 5 CNVs with MAF >5%) in TSPAN8 are nearly depleted in almost all somatic cancer genomes. The

fact that they are also depleted in iPS cell line genomes postulates that TSPAN8CNVs are likely to be under

unknown somatic evolutionary forces. In contrast, genes such asGSTM1 or RHDwhich also harbor common

germline CNV deletions with MAF >30% seem to retain CNV deletions during their somatic evolution (data

not presented). This phenomenon indicates that human germline genomesmight have inbuilt safety mech-

anisms or harbor tumor-suppressive variants, in order to provide inherent protection against uncontrolled

cell proliferation or cancer. Similar to TSPAN8 CNV deletions, one might expect such tumor-suppressive

events to be present as ‘common variants’ in various human populations.

Of note, germline metabolomic signatures of TSPAN8 and its associated genes can shed light on cancer

metabolism, which can be exploited for diagnostic, therapeutic, or palliative interventions. One such pos-

sibility which warrants further investigation is our observation that TSPAN8 and METTL7B (active but with

weak expression) are expressed with high specificity in triple-negative breast cancer (Figure S14).

To conclude, our results robustly demonstrate the strong pleiotropic effects of TSPAN8, METTL7B, and

NKX2-2 on a wide range of human phenotypes, suggesting commonmolecular mechanisms and biological

pathways, which opens up possibilities for diagnostic and therapeutic approaches for metabolic diseases.
Limitations of the study

There are several limitations in our study. First, we were restricted to 228 metabolites (mostly lipids, lipo-

proteins, and fatty acids) measured and provided by Nightingale Healthcare Limited (https://

nightingalehealth.com/). In reality, the human metabolome is quite large and complex (N >>228). Hence,

the real effect of TSPAN8 variants on other categories of metabolite classes remains unknown. In addition,

the genotyping platforms used to detect CNVs in our study are not sufficiently dense to map CNVs to high

resolution. The fact that the cnvHap algorithm leverages probe-by-probe reclustering of LRR and BAF

values to estimate CNV genotypes alleviates this problem to some extent.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Human induced pluripotent stem cells (HipSci) https://www.phe-culturecollections.org.uk/ Catalog no 77650042

Software and algorithms

R https://www.r-project.org/ v3.6.3

Java https://www.oracle.com/uk/java/ JDK 7

cnvHap https://www.imperial.ac.uk/people/l.coin NA

cnvHitSeq https://sourceforge.net/projects/cnvhitseq/ NA

MultiPhen https://github.com/lachlancoin/MultiPhen NA
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Dr Tisham De (tisham.de08@imperial.ac.uk or de.tisham@gmail.com).

Materials availability

NFBC material can be requested from the consortium website https://www.oulu.fi/nfbc/materialrequest.

Data and code availability

d Data

NFBC data are available with appropriate access permissions. Further details are available here https://

www.oulu.fi/nfbc/materialrequest.

Data related to the WH-II study and their phenotypes are available at the following website https://www.

ucl.ac.uk/whitehallII/

d Code

All codes used to process and analyze data are published, and the source code is currently available at.

Multiphen: https://github.com/lachlancoin/MultiPhen

cnvHap: https://www.imperial.ac.uk/people/l.coin

cnvHitSeq: https://sourceforge.net/projects/cnvhitseq/

d Additional information

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

This study did not generate new reagents or software code.

EXPERIMENT MODEL AND SUBJECT DETAILS

Study cohorts

All cohorts reported in this study including data from 1KG project, NFBC 1986, NFBC 1966, Whitehall II

study (WH-II), DESIR, Child Obesity cohort, Adult Obesity cohort, 1958 British Birth Cohort 1958

(BC1958), National Blood Survey (NBS), Helsinki Birth cohort (HBCS), and HipSci samples have prior ethical

approval and consent from all study subjects involved. Further details including aims and methods have
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been reported earlier. In our analysis, we refer to NFBC 1986 as the primary discovery cohort for CNVs and

metabolomic signatures and NFBC 1966 and WH-II as replication cohorts. BC1958, NBS, and HBCS were

used as control cohorts for ascertaining CNV allele frequencies. Child obesity, Adult obesity, and DESIR

cohorts were used for replicating disease outcomes. 1KGNGS data were used for CNV breakpoint and fre-

quency calculations. HipSci data were used for functional characterization of CNVs.
Metabolomic measurements in NFBC 1986 and NFBC 1966

Metabolomic measurements for NFBC 1986 (n=228) and NFBC 1966 (n=228) cohorts were carried out using

high-throughput 1H nuclear magnetic resonance (NMR) technology developed by Nightingale Healthcare

Limited (https://nightingalehealth.com/).

Further details of aims and methods for characterization of various lipoprotein species, ratios, and size

along with other metabolites have been described earlier. A complete list of metabolomic phenotypes

used in our analysis, their names, and categories is listed in Table S5. Clinical characteristics including

age and gender for NFBC cohorts are reported in Table S6.
Lipid measurements in WH-II

After obtaining relevant permissions, we had access to the following lipid measurements for our analysis –

apoprotein A1 (Apo A1), apoprotein B (Apo B), cholesterol total (Bchol), cholesterol HDL (HDL), interme-

diate-density lipoprotein (IDL), triglycerides (Trig), lipoprotein A (LPA), and cholesterol LDL (LDL).
METHODS DETAILS

CNV analysis

NGS-based CNV identification. First, CNV calls were generated using the cnvHiTSeq algorithm (Bellos

et al., 2012) in TSPAN8 genic region using NGS low-coverage data from 1KG project for 17 different pop-

ulations. cnvHiTSeq uses a Hidden Markov Model (HMM)–based probabilistic model for genotyping and

discovering CNVs from NGS platforms. It incorporates various signatures from sequencing data such as

read depth, read pair, and allele frequency information and then integrates them into a single HMMmodel

to provide improved sensitivity for CNV detection. Normalization of the sequence data prior to CNV anal-

ysis using cnvHitSeq was performed in the following manner: sequencing files in binary alignment format

(bam) for the different populations were first downloaded from the 1KGwebsite. For each population, sam-

ples were normalized in a sliding window of 25 base pairs and were corrected for wave effects and GC con-

tent. Next, cnvHiTSeq was run with a combination of read depth and split read information, with an initial

transition probability of 0.15 and 15 expectation maximization (EM) training iterations.
cnvHap: Normalization and quality control

Cohorts genotyped on the Illumina platform were processed through the Illumina Beadstudio (now called

Genomestudio2.0) software. LRR, B-Allele frequency (BAF), and sample SNP genotypes were exported

from the Beadstudio software as ‘final reports’ for subsequent CNV analysis. Prior to CNV calling, data

normalization was done in a genotyping-plate-specific manner in order to correct for batch effects. For

every genotyping plate, data were adjusted for LRR median correction and LRR variance. Genomic wave

effects were accounted for by fitting a localized loess function with a 500-kbp window. Next, the processed

LRR and BAF values with relevant covariates such as genotyping plate, BAF, LRR variance were used as

input by the cnvHap software for CNV calling.
CNV predictions using cnvHap

CNVs in the TSPAN8 gene were called in various cohorts using the cnvHap algorithm (Coin et al., 2010). This

algorithm uses a haplotype HMM for simultaneously discovering and genotyping CNVs from various high-

throughput SNP genotyping platforms such as Illumina Cardio-Metabochip and Agilent aCGH arrays. The

haplotype HMM of cnvHap uses combined information of CNVs (LRR) and SNP (BAF) data in population

aware mode for CNV predictions. cnvHap has specific emission parameters for different genotyping plat-

forms. In our analysis, we used Illumina-platform-specific emission parameters in all cases. cnvHap was

used in its population aware mode where all samples were simultaneously used to train the model. In

contrast, CNV detection methods such as PennCNV trains the HMM one sample at a time and does not

leverage population-level information for CNV prediction.
14 iScience 24, 102893, August 20, 2021
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CNV segmentation

cnvHap calculates the most probable linear sequence of copy number states (hidden state of the HMM

model) for each sample by using dynamic programming and outputs this sequence as CNV breakpoints.

Additionally, cnvHap also calculates probabilistic CNV genotypes or expected CNV genotypes (described

later) based on posterior probabilities. Of note, CNV allele frequency based on breakpoints information

might differ from frequency calculated using posterior probabilities of CNV genotypes.

Expected CNV genotypes

The haplotype HMM of cnvHap calculates the probability of deletion and duplication for each sample at a

given probe which we refer to as the expected CNV genotypes. For example, at a particular probe, if a sam-

ple has CNV genotype assigned as 1 (heterozygous deletion) with probability of 0.8, then the expected

CNV genotype is calculated as

1*0.8 + 2*0.2 = 1.2

The expected CNV genotypes were calculated separately for deletions and duplications for every sample

and at every probe location. We have used expected CNV genotypes for all our association analyses and

results.

Association analysis

Next, using the MultiPhen software (O’Reilly et al., 2012), we carried out both univariate and multivariate

approaches for associating expected CNV genotypes with metabolomic phenotypes in all cohorts. In

the univariate analysis, for every probe location, P values for association were calculated using expected

CNV genotypes as predictors and metabolomic phenotypes as the outcome. For common genomic probe

locations, meta-analysis of NFBC 1986 and NFBC 1966 was performed using the inverse variance fixed-ef-

fect model.

For multivariate analysis, we used the MultiPhen software which implements a reverse regression model

where phenotypes are used as predictors and CNV genotypes are used as outcome. We refer to this

model as a multivariate joint model. The multivariate joint model uses ordinal probit regression to asso-

ciate CNV genotypes (outcome) with multiple metabolomic phenotypes (predictors) simultaneously and

provides a single joint p value capturing the effect of all phenotypes together. In addition, we have

further implemented a variable selection method into this model by using a custom backward-selection

algorithm. This backward-selection method reduces the correlation structure in the phenotypic space

through an iterative process and in the end provides a set of uncorrelated variables. This uncorrelated

set of variables is next used in the standard MultiPhen multivariate joint model to obtain a single P value

and effect size for all phenotypes. In our analysis, we refer to this subset of phenotypes as metabolomic

signatures. In all univariate and multivariate regression analyses, phenotypes were transformed using

quantile normalization and 50 LRR principal components (PCs), LRR variance, and sex were used as

covariates.

Intensity-based validation of CNV association

There have been several reports regarding the use of direct raw signal data from various technology plat-

forms without using intermediate processing or software as an input for bioinformatics methods. Such

approaches have previously been applied for CNV-phenotype association studies where LRR intensity

measurements from genotyping platforms were used (Eleftherohorinou et al., 2011). Here, we have lever-

aged a similar approach by using LRR-phenotype association results as an alternate method to validate

CNV genotype-phenotype association results. Similar to CNV association analysis, we applied univariate

and multivariate approaches from MultiPhen for the LRR data and used for 50 LRR PCs, LRR variance,

and sex as covariates in the model.

Multiple testing

Previous studies have reported the presence of a high degree of correlation in metabolomic and lipid phe-

notypes. In order to adjust for multiple testing thresholds in the presence of such correlation structure,

several alternate methods to Bonferroni correction such as the Sidak-Nyholt correction have been
iScience 24, 102893, August 20, 2021 15



ll
OPEN ACCESS

iScience
Article
proposed (Nyholt, 2004). Briefly in this method, for calculating the net number of effective tests Meff in the

presence of correlation structure in the phenotypes, the following formula can be used.

Meff = 1+ ðM� 1Þ
�
1�VarðlobsÞ

M

�

Here lambdaobs is the eigen decomposition of the correlation matrix of metabolomic phenotypes. The net

effective number of tests Meff obtained can then be applied to the Sidak formula or the Bonferroni correc-

tion, in order to determine the correct p value threshold. On applying this correction to Sidak-Nyholt and

the Bonferroni method, the adjusted multiple testing the p value thresholds obtained were 8.05e-4 and

7.8e-4, respectively.
Linkage disequilibrium

In NFBC 1986 and other cohorts, LD calculation was done using Pearson correlation coefficient for LRR and

CNV genotype data from genotyping arrays and sequence data. In addition, a linear regression model was

also used to calculate LD between CNV genotype and the number of B-alleles. In NFBC 1966, no probes

were found to be in LD (r2>0.5) with TSPAN8 exon 11 or CNVR5583.1 and hence not reported.
QUANTIFICATION AND STATISTICAL ANALYSIS

All quantitative and statistical analyses are described in detail in the methods section of STAR Methods.
ADDITIONAL RESOURCES

Further details regarding the Northern Finland Birth Cohorts longitudinal study are available here- https://

www.oulu.fi/nfbc/nfbc1966_1986.
16 iScience 24, 102893, August 20, 2021
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