351 research outputs found

    Social interactions through the eyes of macaques and humans

    Get PDF
    Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention between rhesus macaques and humans

    Boundary operators in minimal Liouville gravity and matrix models

    Full text link
    We interpret the matrix boundaries of the one matrix model (1MM) recently constructed by two of the authors as an outcome of a relation among FZZT branes. In the double scaling limit, the 1MM is described by the (2,2p+1) minimal Liouville gravity. These matrix operators are shown to create a boundary with matter boundary conditions given by the Cardy states. We also demonstrate a recursion relation among the matrix disc correlator with two different boundaries. This construction is then extended to the two matrix model and the disc correlator with two boundaries is compared with the Liouville boundary two point functions. In addition, the realization within the matrix model of several symmetries among FZZT branes is discussed.Comment: 26 page

    Facial expressions depicting compassionate and critical emotions: the development and validation of a new emotional face stimulus set

    Get PDF
    Attachment with altruistic others requires the ability to appropriately process affiliative and kind facial cues. Yet there is no stimulus set available to investigate such processes. Here, we developed a stimulus set depicting compassionate and critical facial expressions, and validated its effectiveness using well-established visual-probe methodology. In Study 1, 62 participants rated photographs of actors displaying compassionate/kind and critical faces on strength of emotion type. This produced a new stimulus set based on N = 31 actors, whose facial expressions were reliably distinguished as compassionate, critical and neutral. In Study 2, 70 participants completed a visual-probe task measuring attentional orientation to critical and compassionate/kind faces. This revealed that participants lower in self-criticism demonstrated enhanced attention to compassionate/kind faces whereas those higher in self-criticism showed no bias. To sum, the new stimulus set produced interpretable findings using visual-probe methodology and is the first to include higher order, complex positive affect displays

    Gene expression profiling in the lung tissue of cynomolgus monkeys in response to repeated exposure to welding fumes

    Get PDF
    Many in the welding industry suffer from bronchitis, lung function changes, metal fume fever, and diseases related to respiratory damage. These phenomena are associated with welding fumes; however, the mechanism behind these findings remains to be elucidated. In this study, the lungs of cynomolgus monkeys were exposed to MMA-SS welding fumes for 229 days and allowed to recover for 153 days. After the exposure and recovery period, gene expression profiles were investigated using the Affymetrix GeneChip® Human U133 plus 2.0. In total, it was confirmed that 1,116 genes were up-or down-regulated (over 2-fold changes, P < 0.01) for the T1 (31.4 ± 2.8 mg/m3) and T2 (62.5 ± 2.7 mg/m3) dose groups. Differentially expressed genes in the exposure and recovery groups were analyzed, based on hierarchical clustering, and were imported into Ingenuity Pathways Analysis to analyze the biological and toxicological functions. Functional analysis identified genes involved in immunological disease in both groups. Additionally, differentially expressed genes in common between monkeys and rats following welding fume exposure were compared using microarray data, and the gene expression of selected genes was verified by real-time PCR. Genes such as CHI3L1, RARRES1, and CTSB were up-regulated and genes such as CYP26B1, ID4, and NRGN were down-regulated in both monkeys and rats following welding fume exposure. This is the first comprehensive gene expression profiling conducted for welding fume exposure in monkeys, and these expressed genes are expected to be useful in helping to understand transcriptional changes in monkey lungs after welding fume exposure

    Breaking Bread: the Functions of Social Eating

    Get PDF
    Communal eating, whether in feasts or everyday meals with family or friends, is a human universal, yet it has attracted surprisingly little evolutionary attention. I use data from a UK national stratified survey to test the hypothesis that eating with others provides both social and individual benefits. I show that those who eat socially more often feel happier and are more satisfied with life, are more trusting of others, are more engaged with their local communities, and have more friends they can depend on for support. Evening meals that result in respondents feeling closer to those with whom they eat involve more people, more laughter and reminiscing, as well as alcohol. A path analysis suggests that the causal direction runs from eating together to bondedness rather than the other way around. I suggest that social eating may have evolved as a mechanism for facilitating social bonding

    Sex differences in the movement patterns of free-ranging chimpanzees (Pan troglodytes schweinfurthii): foraging and border checking

    Get PDF
    Most social primates live in cohesive groups, so travel paths inevitably reflect compromise: decision processes of individuals are obscured. The fission-fusion social organisation of the chimpanzee, however, allows an individual’s movements to be investigated independently. We followed 15 chimpanzees (8 male and 7 female) through the relatively flat forest of Budongo, Uganda, plotting the path of each individual over periods of 1-3 days. Chimpanzee movement was parsed into phases ending with halts of more than 20 minutes, during which individuals fed, rested or engaged in social activities. Males, lactating or pregnant females, and sexually receptive females all travelled similar average distances between halts, at similar speeds, and along similarly direct beeline paths. Compared to lactating or pregnant females, males did travel for a significantly longer time each day and halted more often, but the most striking sex differences appeared in the organisation of movement phases into a day’s path. After a halt, males tended to continue in the same direction as before. Lactating or pregnant females showed no such strategy and often retraced the preceding phase, returning to previously visited food patches. We suggest that female chimpanzee movements approximate an optimal solution to feeding requirements, whereas the paths of males allow integration of foraging with territorial defence. The ‘continually moving forwards’ strategy of males enables them to monitor their territory boundaries – border checking – whilst foraging, generally avoiding the explicit boundary patrols observed at other chimpanzee study sites

    Kin Selection and the Evolution of Social Information Use in Animal Conflict

    Get PDF
    Animals often use social information about conspecifics in making decisions about cooperation and conflict. While the importance of kin selection in the evolution of intraspecific cooperation and conflict is widely acknowledged, few studies have examined how relatedness influences the evolution of social information use. Here we specifically examine how relatedness affects the evolution of a stylised form of social information use known as eavesdropping. Eavesdropping involves individuals escalating conflicts with rivals observed to have lost their last encounter and avoiding fights with those seen to have won. We use a game theoretical model to examine how relatedness affects the evolution of eavesdropping, both when strategies are discrete and when they are continuous or mixed. We show that relatedness influences the evolution of eavesdropping, such that information use peaks at intermediate relatedness. Our study highlights the importance of considering kin selection when exploring the evolution of complex forms of information use

    5-Fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency

    Get PDF
    BACKGROUND: Colorectal cancer is (CRC) one of the commonest cancers and its therapy is still based on few drugs. Currently, no biological criteria are used to choose the most effective of the established drugs for treatment. METHODS: A panel of 77 CRC cell lines was tested for sensitivity to 5-fluorouracil (5FU) using the SRB assay. The responses were grouped into three categories and correlated with genetic changes in the cell lines. RESULTS: The strongest and most clearcut correlation was between 5-fluorouracil response and replication error status (mismatch repair deficiency). All the other significant correlations (loss of heterozygosity for DCC and mutations in TGFbIIR) are secondary to the association with replication error status. INTERPRETATION AND CONCLUSION: Our findings validate previous analyses based mainly on clinical data, and indicate that replication error status could be a useful guide to 5-fluorouracil-based CRC therapy. Essentially, all previously described correlations with 5FU response are secondary to the association with replication error status

    Time constraints do not limit group size in arboreal guenons but do explain community size and distribution patterns

    Get PDF
    To understand how species will respond to environmental changes, it is important to know how those changes will affect the ecological stress that animals experience. Time constraints can be used as indicators of ecological stress. Here we test whether time constraints can help us understand group sizes, distribution patterns and community sizes of forest guenons (Cercopithecus/Allochrocebus). Forest guenons typically live in small to medium sized one-male multi-female groups and often live in communities with multiple forest guenon species. We developed a time-budget model using published data on time budgets, diets, body sizes, climate, and group sizes to predict maximum ecologically tolerable group and community sizes of forest guenons across 202 sub-Saharan African locations. The model correctly predicted presence/absence at 83% of these locations. Feeding-foraging time (an indicator of competition) limited group sizes, while resting and moving time constraints shaped guenon biogeography. Predicted group sizes were greater than observed group sizes but comparable to community sizes, suggesting community sizes are set by competition among guenon individuals irrespective of species. We conclude that time constraints and intra-specific competition are unlikely to be the main determinants of relatively small group sizes in forest guenons. Body mass was negatively correlated with moving time, which may give larger bodied species an advantage over smaller bodied species under future conditions when greater fragmentation of forests is likely to lead to increased moving time. Resting time heavily depended on leaf consumption and is likely to increase under future climatic conditions when leaf quality is expected to decrease
    • …
    corecore