370 research outputs found

    Spinor Helicity and Dual Conformal Symmetry in Ten Dimensions

    Full text link
    The spinor helicity formalism in four dimensions has become a very useful tool both for understanding the structure of amplitudes and also for practical numerical computation of amplitudes. Recently, there has been some discussion of an extension of this formalism to higher dimensions. We describe a particular implementation of the spinor-helicity method in ten dimensions. Using this tool, we study the tree-level S-matrix of ten dimensional super Yang-Mills theory, and prove that the theory enjoys a dual conformal symmetry. Implications for four-dimensional computations are discussed.Comment: 24 pages, 1 figure

    The All-Loop Integrand For Scattering Amplitudes in Planar N=4 SYM

    Full text link
    We give an explicit recursive formula for the all L-loop integrand for scattering amplitudes in N=4 SYM in the planar limit, manifesting the full Yangian symmetry of the theory. This generalizes the BCFW recursion relation for tree amplitudes to all loop orders, and extends the Grassmannian duality for leading singularities to the full amplitude. It also provides a new physical picture for the meaning of loops, associated with canonical operations for removing particles in a Yangian-invariant way. Loop amplitudes arise from the "entangled" removal of pairs of particles, and are naturally presented as an integral over lines in momentum-twistor space. As expected from manifest Yangian-invariance, the integrand is given as a sum over non-local terms, rather than the familiar decomposition in terms of local scalar integrals with rational coefficients. Knowing the integrands explicitly, it is straightforward to express them in local forms if desired; this turns out to be done most naturally using a novel basis of chiral, tensor integrals written in momentum-twistor space, each of which has unit leading singularities. As simple illustrative examples, we present a number of new multi-loop results written in local form, including the 6- and 7-point 2-loop NMHV amplitudes. Very concise expressions are presented for all 2-loop MHV amplitudes, as well as the 5-point 3-loop MHV amplitude. The structure of the loop integrand strongly suggests that the integrals yielding the physical amplitudes are "simple", and determined by IR-anomalies. We briefly comment on extending these ideas to more general planar theories.Comment: 46 pages; v2: minor changes, references adde

    Dual conformal constraints and infrared equations from global residue theorems in N=4 SYM theory

    Get PDF
    Infrared equations and dual conformal constraints arise as consistency conditions on loop amplitudes in N=4 super Yang-Mills theory. These conditions are linear relations between leading singularities, which can be computed in the Grassmannian formulation of N=4 super Yang-Mills theory proposed recently. Examples for infrared equations have been shown to be implied by global residue theorems in the Grassmannian picture. Both dual conformal constraints and infrared equations are mapped explicitly to global residue theorems for one-loop next-to-maximally-helicity-violating amplitudes. In addition, the identity relating the BCFW and its parity-conjugated form of tree-level amplitudes, is shown to emerge from a particular combination of global residue theorems.Comment: 21 page

    Manifest SO(N) invariance and S-matrices of three-dimensional N=2,4,8 SYM

    Get PDF
    An on-shell formalism for the computation of S-matrices of SYM theories in three spacetime dimensions is presented. The framework is a generalization of the spinor-helicity formalism in four dimensions. The formalism is applied to establish the manifest SO(N) covariance of the on-shell superalgebra relevant to N =2,4 and 8 SYM theories in d=3. The results are then used to argue for the SO(N) invariance of the S-matrices of these theories: a claim which is proved explicitly for the four-particle scattering amplitudes. Recursion relations relating tree amplitudes of three-dimensional SYM theories are shown to follow from their four-dimensional counterparts. The results for the four-particle amplitudes are verified by tree-level perturbative computations and a unitarity based construction of the integrand corresponding to the leading perturbative correction is also presented for the N=8 theory. For N=8 SYM, the manifest SO(8) symmetry is used to develop a map between the color-ordered amplitudes of the SYM and superconformal Chern-Simons theories, providing a direct connection between on-shell observables of D2 and M2-brane theories.Comment: 28 page

    Solution to the Ward Identities for Superamplitudes

    Get PDF
    Supersymmetry and R-symmetry Ward identities relate on-shell amplitudes in a supersymmetric field theory. We solve these Ward identities for (Next-to)^K MHV amplitudes of the maximally supersymmetric N=4 and N=8 theories. The resulting superamplitude is written in a new, manifestly supersymmetric and R-invariant form: it is expressed as a sum of very simple SUSY and SU(N)_R-invariant Grassmann polynomials, each multiplied by a "basis amplitude". For (Next-to)^K MHV n-point superamplitudes the number of basis amplitudes is equal to the dimension of the irreducible representation of SU(n-4) corresponding to the rectangular Young diagram with N columns and K rows. The linearly independent amplitudes in this algebraic basis may still be functionally related by permutation of momenta. We show how cyclic and reflection symmetries can be used to obtain a smaller functional basis of color-ordered single-trace amplitudes in N=4 gauge theory. We also analyze the more significant reduction that occurs in N=8 supergravity because gravity amplitudes are not ordered. All results are valid at both tree and loop level.Comment: 29 pages, published versio

    Unraveling L_{n,k}: Grassmannian Kinematics

    Get PDF
    It was recently proposed that the leading singularities of the S-Matrix of N = 4 super Yang-Mills theory arise as the residues of a contour integral over a Grassmannian manifold, with space-time locality encoded through residue theorems generalizing Cauchy's theorem to more than one variable. We provide a method to identify the residue corresponding to any leading singularity, and we carry this out very explicitly for all leading singularities at tree level and one-loop. We also give several examples at higher loops, including all generic two-loop leading singularities and an interesting four-loop object. As a special case we consider a 12-pt N^4MHV leading singularity at two loops that has a new kinematic structure involving double square roots. Our analysis results in a simple picture for how the topological structure of loop graphs is reflected in various substructures within the Grassmannian.Comment: 26+11 page

    The S-Matrix in Twistor Space

    Get PDF
    The simplicity and hidden symmetries of (Super) Yang-Mills and (Super)Gravity scattering amplitudes suggest the existence of a "weak-weak" dual formulation in which these structures are made manifest at the expense of manifest locality. We suggest that this dual description lives in (2,2) signature and is naturally formulated in twistor space. We recast the BCFW recursion relations in an on-shell form that begs to be transformed into twistor space. Our twistor transformation is inspired by Witten's, but differs in treating twistor and dual twistor variables more equally. In these variables the three and four-point amplitudes are amazingly simple; the BCFW relations are represented by diagrammatic rules that precisely define the "twistor diagrams" of Andrew Hodges. The "Hodges diagrams" for Yang-Mills theory are disks and not trees; they reveal striking connections between amplitudes and suggest a new form for them in momentum space. We also obtain a twistorial formulation of gravity. All tree amplitudes can be combined into an "S-Matrix" functional which is the natural holographic observable in asymptotically flat space; the BCFW formula turns into a quadratic equation for this "S-Matrix", providing a holographic description of N=4 SYM and N=8 Supergravity at tree level. We explore loop amplitudes in (2,2) signature and twistor space, beginning with a discussion of IR behavior. We find that the natural pole prescription renders the amplitudes well-defined and free of IR divergences. Loop amplitudes vanish for generic momenta, and in twistor space are even simpler than their tree-level counterparts! This further supports the idea that there exists a sharply defined object corresponding to the S-Matrix in (2,2) signature, computed by a dual theory naturally living in twistor space.Comment: V1: 46 pages + 23 figures. Less telegraphic abstract in the body of the paper. V2: 49 pages + 24 figures. Largely expanded set of references included. Some diagrammatic clarifications added, minor typo fixe

    A manifestly MHV Lagrangian for N=4 Yang-Mills

    Full text link
    We derive a manifestly MHV Lagrangian for the N=4 supersymmetric Yang-Mills theory in light-cone superspace. This is achieved by constructing a canonical redefinition which maps the N=4 superfield and its conjugate to a new pair of superfields. In terms of these new superfields the N=4 Lagrangian takes a (non-polynomial) manifestly MHV form, containing vertices involving two superfields of negative helicity and an arbitrary number of superfields of positive helicity. We also discuss constraints satisfied by the new superfields, which ensure that they describe the correct degrees of freedom in the N=4 supermultiplet. We test our derivation by showing that an expansion of our superspace Lagrangian in component fields reproduces the correct gluon MHV vertices.Comment: 37 pages, 1 figure. v2: minor changes, references adde

    Towards Field Theory Amplitudes From the Cohomology of Pure Spinor Superspace

    Full text link
    A simple BRST-closed expression for the color-ordered super-Yang-Mills 5-point amplitude at tree-level is proposed in pure spinor superspace and shown to be BRST-equivalent to the field theory limit of the open superstring 5-pt amplitude. It is manifestly cyclic invariant and each one of its five terms can be associated to the five Feynman diagrams which use only cubic vertices. Its form also suggests an empirical method to find superspace expressions in the cohomology of the pure spinor BRST operator for higher-point amplitudes based on their kinematic pole structure. Using this method, Ansaetze for the 6- and 7-point 10D super-Yang-Mills amplitudes which map to their 14 and 42 color-ordered diagrams are conjectured and their 6- and 7-gluon expansions are explicitly computed.Comment: 14 pages, harvmac, v4: trivial edits in the text to comply with JHEP refere

    R^4 counterterm and E7(7) symmetry in maximal supergravity

    Get PDF
    The coefficient of a potential R^4 counterterm in N=8 supergravity has been shown previously to vanish in an explicit three-loop calculation. The R^4 term respects N=8 supersymmetry; hence this result poses the question of whether another symmetry could be responsible for the cancellation of the three-loop divergence. In this article we investigate possible restrictions from the coset symmetry E7(7)/SU(8), exploring the limits as a single scalar becomes soft, as well as a double-soft scalar limit relation derived recently by Arkani-Hamed et al. We implement these relations for the matrix elements of the R^4 term that occurs in the low-energy expansion of closed-string tree-level amplitudes. We find that the matrix elements of R^4 that we investigated all obey the double-soft scalar limit relation, including certain non-maximally-helicity-violating six-point amplitudes. However, the single-soft limit does not vanish for this latter set of amplitudes, which suggests that the E7(7) symmetry is broken by the R^4 term.Comment: 33 pages, typos corrected, published versio
    corecore