6,470 research outputs found
Splash jet generated by collision of two liquid wedges
A complete nonlinear self-similar solution that characterizes the impact of two liquid wedges symmetric about the velocity direction is obtained assuming the liquid to be ideal and incompressible, with negligible surface tension and gravity effects. Employing the integral hodograph method, analytical expressions for the complex potential and for its derivatives are derived. The boundary value problem is reduced to two integro-differential equations in terms of the velocity modulus and angle to the free surface. Numerical results are presented in a wide range of wedge angles for the free surface shapes, streamline patterns, and pressure distributions. It is found that the splash jet may cause secondary impacts. The regions with and without secondary impacts in the plane of the wedge angles are determined
Multiphase modelling of the effect of fluid shear stress on cell yield and distribution in a hollow fibre membrane bioreactor
We present a simplified two-dimensional model of fluid flow, nutrient transport and cell distribution in a hollow fibre membrane bioreactor, with the aim of exploring how fluid flow can be used to control the distribution and yield of a cell population which is sensitive to both fluid shear stress and nutrient concentration. The cells are seeded in a scaffold in a layer on top of the hollow fibre, only partially occupying the extracapillary space. Above this layer is a region of free-flowing fluid which we refer to as the upper fluid layer. The flow in the lumen and upper fluid layer is described by the Stokes equations, whilst the flow in the porous fibre membrane is assumed to follow Darcy’s law. Porous mixture theory is used to model the dynamics of and interactions between the cells, scaffold and fluid in the cell–scaffold construct. The concentration of a limiting nutrient (e.g. oxygen) is governed by an advection–reaction–diffusion equation in each region. Through exploitation of the small aspect ratio of each region and asymptotic analysis, we derive a coupled system of partial differential equations for the cell volume fraction and nutrient concentration. We use this model to investigate the effect of mechanotransduction on the distribution and yield of the cell population, by considering cases in which cell proliferation is either enhanced or limited by fluid shear stress and by varying experimentally controllable parameters such as flow rate and cell–scaffold construct thickness
Extensional flow of a compressible viscous fluid
We derive reduced models for extrusion problems where it is necessary to account for fluid compressibility. We consider the two-dimensional extensional flow of a compressible viscous fluid and discuss two specific applications: weakly compressible fluids and bubbly liquid-gas mixtures that behave as a single compressible fluid. The mathematical model we present consists of equations for conservation of mass, conservation of momentum and a closure relationship between the pressure and density. The most substantial differences between compressible extrusion problems is in the closure relationship. By integrating the conservation equations across the fluid cross-section and exploiting a slender aspect ratio, we derive reduced equations for conservation of mass and conservation of momentum in the direction of flow. The reduced system of equations relating cross-sectionally averaged quantities is closed by a relationship between the averaged pressure and density, which will differ substantially depending on the application. We demonstrate the utility of a reduced model for both the weakly compressible fluid and bubbly mixture applications; namely, in providing valuable quantitative insights without needing to solve a complicated free-boundary problem
A continuum model for the elongation and orientation of Von Willebrand factor with applications in arterial flow
The blood protein Von Willebrand factor (VWF) is critical in facilitating arterial thrombosis. At pathologically high shear rates, the protein unfolds and binds to the arterial wall, enabling the rapid deposition of platelets from the blood. We present a novel continuum model for VWF dynamics in fow based on a modifed viscoelastic fuid model that incorporates a single constitutive relation to describe the propensity of VWF to unfold as a function of the scalar shear rate. Using experimental data of VWF unfolding in pure shear fow, we fx the parameters for VWF’s unfolding propensity and the maximum VWF length, so that the protein is half unfolded at a shear rate of approximately 5000 s−1 . We then use the theoretical model to predict VWF’s behaviour in two complex fows where experimental data are challenging to obtain: pure elongational fow and stenotic arterial fow. In pure elongational fow, our model predicts that VWF is 50% unfolded at approximately 2000 s−1 , matching the established hypothesis that VWF unfolds at lower shear rates in elongational fow than in shear fow. We demonstrate the sensitivity of this elongational fow prediction to the value of maximum VWF length used in the model, which varies signifcantly across experimental studies, predicting that VWF can unfold between 2000 and 3200 s−1 depending on the selected value. Finally, we examine VWF dynamics in a range of idealised arterial stenoses, predicting the relative extension of VWF in elongational fow structures in the centre of the artery compared to high shear regions near the arterial walls
Airway smooth muscle CXCR3 ligand production: Regulation by JAK-STAT1 and intracellular Ca<sup>2+</sup>
In asthma, airway smooth muscle (ASM) chemokine (C-X-C motif) receptor 3 (CXCR3) ligand production may attract mast cells or T lymphocytes to the ASM, where they can modulate ASM functions. In ASM cells (ASMCs) from people with or without asthma, we aimed to investigate JAK-STAT1, JNK, and Ca2+ involvement in chemokine (C-X-C motif) ligand (CXCL)10 and CXCL11 production stimulated by interferon-γ, IL-1β, and TNF-α combined (cytomix). Confluent, growth-arrested ASMC were treated with inhibitors for pan-JAK (pyridone-6), JAK2 (AG-490), JNK (SP-600125), or the sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) pump (thapsigargin), Ca2+ chelator (BAPTA-AM), or vehicle before and during cytomix stimulation for up to 24 h. Signaling protein activation as well as CXCL10/CXCL11 mRNA and protein production were examined using immunoblot analysis, real-time PCR, and ELISA, respectively. Cytomix-induced STAT1 activation was lower and CXCR3 ligand mRNA production was more sensitive to pyridone-6 and AG-490 in asthmatic than nonasthmatic ASMCs, but CXCL10/CXCL11 release was inhibited by the same proportion. Neither agent caused additional inhibition of release when used in combination with the JNK inhibitor SP-600125. Conversely, p65 NF-κB activation was higher in asthmatic than nonasthmatic ASMCs. BAPTA-AM abolished early CXCL10/CXCL11 mRNA production, whereas thapsigargin reduced it in asthmatic cells and inhibited CXCL10/CXCL11 release by both ASMC types. Despite these inhibitory effects, neither Ca2+ agent affected early activation of STAT1, JNK, or p65 NF-κB. In conclusion, intracellular Ca2+ regulated CXCL10/CXCL11 production but not early activation of the signaling molecules involved. In asthma, reduced ASM STAT1-JNK activation, increased NF-κB activation, and altered Ca2+ handling may contribute to rapid CXCR3 ligand production and enhanced inflammatory cell recruitment. © 2013 the American Physiological Society
Echocardiographic assessment and percutaneous closure of multiple atrial septal defects
Atrial septal defect closure is now routinely performed using a percutaneous approach under echocardiographic guidance. Centrally located, secundum defects are ideal for device closure but there is considerable morphological variation in size and location of the defects. A small proportion of atrial septal defects may have multiple fenestrations and these are often considered unsuitable for device closure. We report three cases of multiple atrial septal defects successfully closed with two Amplatzer septal occluders
Motorized circular rail with RGB-D sensor on cart for physical rehabilitation
This paper introduces a motorized circular rail managing the movement of two carts equipped with an RGB-D sensor each. The proposal is aimed at continuously tracking a person who is undergoing a series of physical rehabilitation exercises from two different viewpoints to monitor if the exercises are being correctly conducted. More concretely, this work offers all details of the trajectory calculation for safe movement of both carts on the motorized circular rail. Then, two study cases are presented to show the efficiency of the control algorithms implemented.AEI - Agencia Estatal de Investigação(TIN2016-79100-R)This work was partially supported by Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI) / European Regional Development Fund (FEDER, UE) under DPI2016-80894-R and TIN2016-79100-R
grants
Assessing Dysplasia of a Bronchial Biopsy with FTIR Spectroscopic Imaging
An FTIR image of an 8 µm section of de-paraffinised bronchial biopsy that shows a histological transition from normal to severe dysplasia/squamous cell carcinoma (SCC) insitu was obtained in transmission by stitching together images of 256 x 256 µm recorded using a 96 x 96 element FPA detector. Each pixel spectrum was calculated from 128 co-added interferograms at 4 cm−1 resolution. In order to improve the signal to noise ratio, blocks of 4x4 adjacent pixels were subsequently averaged. Analyses of this spectral image, after conversion of the spectra to their second derivatives, show that the epithelium and the lamina propria tissue types can be distinguished using the area of troughs at either 1591, 1334, 1275 or 1215 cm−1 or, more effectively, by separation into two groups by hierarchical clustering (HCA) of the 1614-1465 region. Due to an insufficient signal to noise ratio, disease stages within the image could not be distinguished with this extent of pixel averaging. However, after separation of the cell types, disease stages within either the epithelium or the lamina propria could be distinguished if spectra were averaged from larger, manually selected areas of the tissue. Both cell types reveal spectral differences that follow a transition from normal to cancerous histology. For example, spectral changes that occurred in the epithelium over the transition from normal to carcinoma insitu could be seen in the 1200-1000 cm−1 region, particularly as a decrease in the second derivative troughs at 1074 and 1036 cm−1 , consistent with changes in some form of carbohydrate. Spectral differences that indicate a disease transition from normal to carcinoma in the lamina propria could be seen in the 1350-1175 cm−1 and 1125-1030 cm−1 regions. Thus demonstrating that a progression from healthy to severe dysplasia/squamous cell carcinoma (SCC) insitu can be seen using FTIR spectroscopic imaging and multivariate analysis
Black, Hispanic, and White Women's Perception of Heart Disease
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73200/1/j.0889-7204.2007.05698.x.pd
- …