7,794 research outputs found

    Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells' sensitivity to cytotoxic drugs.

    Get PDF
    We studied the actions of geldanamycin (GA) and herbimycin A (HMA), inhibitors of the chaperone proteins Hsp90 and GRP94, on B chronic lymphocytic leukemia (CLL) cells in vitro. Both drugs induced apoptosis of the majority of CLL isolates studied. Whereas exposure to 4-hour pulses of 30 to 100 nM GA killed normal B lymphocytes and CLL cells with similar dose responses, T lymphocytes from healthy donors as well as those present in the CLL isolates were relatively resistant. GA, but not HMA, showed a modest cytoprotective effect toward CD34+ hematopoietic progenitors from normal bone marrow. The ability of bone marrow progenitors to form hematopoietic colonies was unaffected by pulse exposures to GA. Both GA and HMA synergized with chlorambucil and fludarabine in killing a subset of CLL isolates. GA- and HMA-induced apoptosis was preceded by the up-regulation of the stress-responsive chaperones Hsp70 and BiP. Both ansamycins also resulted in down-regulation of Akt protein kinase, a modulator of cell survival. The relative resistance of T lymphocytes and of CD34+ bone marrow progenitors to GA coupled with its ability to induce apoptosis following brief exposures and to synergize with cytotoxic drugs warrant further investigation of ansamycins as potential therapeutic agents in CLL

    A modified ant colony optimization algorithm modeled on tabu-search methods

    Get PDF
    Author name used in this publication: S. L. Ho2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A self-learning simulated annealing algorithm for global optimizations of electromagnetic devices

    Get PDF
    Author name used in this publication: S. L. Ho2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A combined wavelet-element free Galerkin method for numerical calculations of electromagnetic fields

    Get PDF
    Author name used in this publication: S. L. HoAuthor name used in this publication: J. M. Machado2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A new implementation of population based incremental learning method for optimizations in electromagnetics

    Get PDF
    Author name used in this publication: S. L. Ho2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    New differential equations for on-shell loop integrals

    Full text link
    We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite series of integrals satisfying such iterative differential equations. The differential operators we use are best written using momentum twistor space. The use of the latter was advocated in recent papers discussing loop integrals in N=4 super Yang-Mills. One of our motivations is to provide a tool for deriving analytical results for scattering amplitudes in this theory. We show that the integrals needed for planar MHV amplitudes up to two loops can be thought of as deriving from a single master topology. The master integral satisfies our differential equations, and so do most of the reduced integrals. A consequence of the differential equations is that the integrals we discuss are not arbitrarily complicated transcendental functions. For two specific two-loop integrals we give the full analytic solution. The simplicity of the integrals appearing in the scattering amplitudes in planar N=4 super Yang-Mills is strongly suggestive of a relation to the conjectured underlying integrability of the theory. We expect these differential equations to be relevant for all planar MHV and non-MHV amplitudes. We also discuss possible extensions of our method to more general classes of integrals.Comment: 39 pages, 8 figures; v2: typos corrected, definition of harmonic polylogarithms adde

    An improved tabu-based vector optimal algorithm for design optimizations of electromagnetic devices

    Get PDF
    Author name used in this publication: S. Y. YangAuthor name used in this publication: S. L. HoAuthor name used in this publication: J. M. MachadoAuthor name used in this publication: Edward W. C. Lo2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Wavelet-Galerkin method for computations of electromagnetic fields-computation of connection coefficients

    Get PDF
    Author name used in this publication: S. L. HoAuthor name used in this publication: H. C. Wong2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    From Correlators to Wilson Loops in Chern-Simons Matter Theories

    Full text link
    We study n-point correlation functions for chiral primary operators in three dimensional supersymmetric Chern-Simons matter theories. Our analysis is carried on in N=2 superspace and covers N=2,3 supersymmetric CFT's, the N=6 ABJM and the N=8 BLG models. In the limit where the positions of adjacent operators become light-like, we find that the one-loop n-point correlator divided by its tree level expression coincides with a light-like n-polygon Wilson loop. Remarkably, the result can be simply expressed as a linear combination of five dimensional two-mass easy boxes. We manage to evaluate the integrals analytically and find a vanishing result, in agreement with previous findings for Wilson loops.Comment: 32 pages, 6 figures, JHEP

    From correlation functions to Wilson loops

    Get PDF
    We start with an n-point correlation function in a conformal gauge theory. We show that a special limit produces a polygonal Wilson loop with nn sides. The limit takes the nn points towards the vertices of a null polygonal Wilson loop such that successive distances xi,i+120x^2_{i,i+1} \to 0. This produces a fast moving particle that generates a "frame" for the Wilson loop. We explain in detail how the limit is approached, including some subtle effects from the propagation of a fast moving particle in the full interacting theory. We perform perturbative checks by doing explicit computations in N=4 super-Yang-Mills.Comment: 37 pages, 10 figures; typos corrected, references adde
    corecore