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To enhance the global search ability of population based incremental learning (PBIL) methods, it is proposed that multiple probability
vectors are to be included on available PBIL algorithms. The strategy for updating those probability vectors and the negative learning
and mutation operators are thus re-defined correspondingly. Moreover, to strike the best tradeoff between exploration and exploitation
searches, an adaptive updating strategy for the learning rate is designed. Numerical examples are reported to demonstrate the pros and

cons of the newly implemented algorithm.

Index Terms—Genetic algorithm (GA), global optimization, inverse problem, population based incremental learning (PBIL) method.

1. INTRODUCTION

ENETIC algorithm (GA) is commonly entrusted as a
standard algorithm for function optimizations. In GA,
the three key operators are selection, crossover and mutation.
However, these operators are very complex in terms of both
theory and numerical implementation. It is thus preferable
to design a genetic based optimal algorithm that inherits the
searching power of available GAs and excludes the use of,
at least partly, the aforementioned operators. In this regard,
the population based incremental learning (PBIL) evolution
algorithm is a worthy candidate deserving further attentions
[1]. The PBIL method is developed by combining GA and the
competitive learning, which is often used in artificial neural
network, so as to reduce the difficulties on the crossover and
mutation operations in a GA, and yet retaining the stochastic
search nature of the GA. PBIL therefore is similar to GA in
using a binary encoded representation of an optimal problem.
The salient feature of this algorithm is the introduction of a
real valued probability vector. The length of this real valued
probability vector is identical to that of the encoded chromo-
some of a feasible solution in optimal problems. The value of
each element of the vector is the probability of having a 1 in
that particular bit position of the encoded chromosome. In every
generation, this probability vector is used to generate a new pop-
ulation in such a way that the probability for the sth bit of a
chromosome to become 1 is proportional to the value of the zth
element of this probability vector. After evaluating the objec-
tive functions of the new population, this probability vector is
updated by using only the best individual of the current popu-
lation to help it shifting towards the chromosome of this new
individual. Initially, all the values of the probability vector are
set to 0.5 and sampling from this vector will thus produce a uni-
form distribution of the initial population on the feasible param-
eter space, as there is equal likelihood in the generation of 1 or
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0 for each binary bit of the solution chromosome in this case.
As the search progresses, the probability vector is expected to
shift gradually to correspond to solutions with the highest fit-
ness values.
The evolutionary procedure of a basic PBIL algorithm can be

described by using the pseudo-Pascal as
Begin

Initialize the probability vector, p, to 0.5 s

stopcriterion := false

While stopcriterion := false do

Generate a new population of individuals from the
probability vector, p, where the probability of a 1
in each bit position of a chromosome is determined
by the value of the corresponding element of the
current probability vector;

Find the individual with the best function value
among the individuals of the new generation.
Denote the chromosome of this solution as best;

Update the vector p towards the best solution by
using

p’(i) = (1.0 — LR) - p’ (i) + LR - best(i) 1)

Mutate the probability vector p;
If the stop criterion is satisfied then
stopcriterion := true;
Endif
Enddo
End
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In (1), LR is the (positive) learning rate from the best solu-
tions. Conceptually, the PBIL method is very simple when com-
pared with GA, and can be implemented easily. It requires only
primitive mathematical operators and very few algorithm pa-
rameters need tuning. By virtue of its straight-forward design
philosophy and implementation simplicity, PBIL has attracted
the attention of many researchers and has been used very suc-
cessfully in solving a wide range of optimal problems in many
disciplines [2]-[4].

However, PBIL is still in its development infancy when com-
pared to its mature counterparts of common GA. For example,
while the use of probability vector is considered a blessing be-
cause the algorithm will be less dependent on the selection and
crossover operators, it can also be a disadvantage as the col-
lective knowledge accumulated from other searched individuals
are not used properly, and the probability vector is only up-
dated using a limited number of best solutions. This may de-
grade the diversity of the populations or reduce the computa-
tional efficiency of the algorithm. Also, the use of only one prob-
ability vector to represent the whole population will inevitably
reduce diversity, thereby degrading the global search abilities
of the algorithm. Hence many PBIL methods are often trapped
onto local optima. To enhance the global search ability while
retaining the advantages of available PBIL algorithms, such as
their conceptual simplicity and implemental easiness, some in-
novative ideas as detailed below are proposed in this study.

II. A NEW IMPLEMENTATION OF PBIL METHOD

A. Introduction of Multiple Probability Vectors

One of the reasons for common PBIL methods to have low
global search ability is because only one probability vector is
used to represent the whole population. Consequently, multiple
probability vectors are proposed, i.e., every individual uses dif-
ferent probability vectors to generate its own children. The prob-
ability vector of the jth individual, p’, is thus updated at the end
of each generation by using

p’(i) = (1.0 — LR?) - p? (i) + LR? -best’ (i) (2)

where LR is the learning rate of the individual j; best? () is
the value of the sth bit of the binary encoded string of the best
solutions so far searched by individual j.

B. Utilization of Community Knowledge

To use fully the community’s knowledge to guide the search
towards promising regions of the feasible parameter space, it
is proposed that the information about the best solutions ex-
plored by the neighborhood individuals of a solution is inte-
grated with the updating of the probability vector of the spe-
cific solution. Moreover, to strike a good balance in exploiting
an individual’s knowledge and its neighbors’ experiences, an in-
terrelated random weighting parameter, based on modeling the
reasoning ability of an “intelligent” society, is introduced, and
(1) then becomes

p(i) = (1.0 — LRY) - p? (i) + LRI - 7 - best? (i)
+LR? - (1.0 — r) - neighbor,,..; (i) (3)

where neighbor, s (7) is the value of the ith bit of the binary
encoded string of the best solution so far searched by the neigh-
borhood individuals of individual j; r is a random parameter
chosen from within the interval [0, 1].
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It should be pointed out that the neighborhood is defined in
a topological sense rather than a physical one in this paper, and
such concept is similar to that used in particle swarm optimiza-
tion (PSO) methods.

C. Shift Away From Worst Individuals

To move away from the worst individuals, the negative
learning concept is also employed to update the proposed
multiple probability vectors. This again is similar to that used
in PSO. To avoid shifting away from either the best or worst
solutions, when the difference between the two are becoming
increasingly small because most individuals have converged to
the same solution towards the final search stage, the formulae
for amending the probability vector of individual j using the
worst solution is proposed as

pJ (7) ~ (best(i) = worst(i))
p’(i)- (1 - NLR?) 4)
+best(i) - NLR? (best(i) # worst(7))

P (i) =

where NLR’ is the negative learning rate of individual j;
worst(z) and best(4) are, respectively, the values of the ith bits
of the binary encoded strings of the worst solution searched by
the current population and the best solution searched so far by
the algorithm.

D. Mutation Operations

To further enhance the diversity of the populations of the pro-
posed algorithm, two different mutation operators, one acts di-
rectly on the generated individuals and one on the probability
vectors, are introduced. Here the first mutation operator is the
same as that which is commonly used in a GA. To mutate the
probability vector of the jth individual, the following equation
is used

(if random(0, 1) > Mut_probability)

e ) ()
e _{Pf(i) + sign (random(0,1)) X Anu ©

(otherwise)

where Mut_Probability is the mutation probability; Aypyt is the
amount for mutation to affect the probability vector; sign(e) is
a sign function defined as

senir) = {1y (1203 ©

E. Adaptive Updating of Learning Rates

On the right hand side of (3), the first term determines the
global search ability that forces the search to generate individ-
uals uniformly from the entire feasible space. The second and
third terms dominate the local search ability that compel an in-
dividual to gravitate toward a stochastically weighted average of
the previous best position of its own and the best position found
by any of its neighbors, on the assumption that the initial prob-
ability vectors of 0.5 are being used.

Therefore, to strike the best balance between solution quality
(global solution) and speed, the learning rates should be as small
as possible at the beginning and be as large as possible at the
end of the search process. Ideally, this increase from minimum
to maximum should be realized automatically during the entire
search process. For a specific period, the learning rates should
also vary according to the characteristics of the specific search
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process in order to strike a good balance among the exploration
(global) and exploitation (local) searches. o

As an illustration, one considers the ratio of /V: } /N. J where
N7 is the successive iterations with improvements in the objec-
tive function in the most recent 7. iterations of individual j. A
high value of this ratio means that it is possible to locate better
solutions using its current probability vector, and consequently
its learning rate should be small; Conversely, a low value of such
ratio implies the chance to find better solutions is very slim un-
less the current probability vector is modified, and consequently
the learning rate should be increased. Thus the variations of the
learning rates should satisfy both requirements, one in local and
one in global sense as mentioned earlier. Consequently, an adap-
tive updating strategy is designed to adjust the learning rates of
every individual after certain number of iterations in order to
achieve these two goals. For example, for the jth individual,
its probability vector will be updated after every V7. iterations
using

_ . , : Nj
LR = Lanin + (LRinax - LRan) €xp __{ (7)
N

where LR, ; and LR} . are the minimum and maximum

learning rates of the jth individual, respectively.

F. Stop Criterion

To reduce the iterative number effectively, a dynamic stop
criterion is used in the proposed PBIL algorithm, i.e., the
searching process will be automatically terminated once the
number of successive iterations without improvements in the
objective function exceeds a threshold value V.

III. NUMERICAL EXAMPLES

To evaluate the performances of the proposed PBIL method, it
is tested on both mathematical functions and engineering design
problems. In these numerical experiments, the parameters used
for each probability vector of the proposed and common PBIL
methods are the same, and are set as: population size: 20, muta-
tion probability: 0.02, maximum learning rate: 0.15, minimum
learning rate: 0.05, negative learning rate: 0.05, Ny = 100,
Anug = 0.04. Every optimal method will stop its iterative
process once the number of successive iterations without im-
provements in the best objective function value searched so far
reaches 100.

A. Validation

A multimodal mathematical function is solved by using the
proposed and the original PBIL algorithms in order to compare
their performances. The function is defined as

min f(z)= %{10 sin?(7)

n—1
+ Z [(z;—1)% - (1410sin*(7z;))]
i=1
+(73n - 1)2}
subject to — 10<z;<10 (i=1,2,---,5). ®)

This function has roughly 10 local optima, and the global
oneisatz; = 1 (i = 1,2,...,5) with fop = 0. To exten-
sively assess the computational efforts of the proposed PBIL
algorithm, two variants of it are also investigated in this study.
The first, PBIL_Variant_A, uses a constant learning rate of 0.15,
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT OPTIMAL METHODS ON THE
MATHEMATICAL FUNCTION FOR 100 INDEPENDENT RUNS

Algorithms Averaged iterations  Chance of finding global solution
Common PBIL 2895 39/100
Proposed PBIL 3425 98/100
PBIL_Variant_A 2544 41/100
PBIL_Variant_B 3668 95/100
Tabu 3616 100/100

and the second, PBIL_Variant_B, has a constant learning rate of
0.1. All other parameters are the same as those set earlier. For
the sake of completeness, a tabu method [5] is also used to study
this problem for purpose of performance comparisons.

In the numerical implementations, every algorithm is run in-
dependently 100 times and the “averaged” performance com-
parison results are given in Table I. From these numerical re-
sults, it is obvious that:

1) the global search ability of the proposed PBIL method in
solving this extremely challenging mathematical function,
which has 10° local optima, is increased from 39% to 98%;

2) the search efficiency of the proposed PBIL method,
without the proposed updating scheme for the learning
rates, is degraded, comparatively, while its global search
ability is also degraded slightly if a low positive learning
rate, as shown by the performances of PBIL Variant_B, is
used;

3) increasing the learning rates will reduce the global search
ability, although it can increase the computation efficiency
of a PBIL algorithm, as demonstrated by the performances
of the PBIL_Variant_A;

4) even if a relatively high constant learning rate is used, the
global search ability of the proposed PBIL method is still
superior (albeit marginally only) to that of available PBIL
ones while the “averaged” iterations of the former are less
than 88% of those of the latter, thereby validating the ef-
fectiveness of the improvements in terms of performance
enhancement of the PBIL methods using the proposed al-
gorithm;

5) considering both solution speed and global search ability
collectively, the overall performance of the proposed one
is comparable to those of the tabu method.

B. Application

The proposed PBIL algorithm is used to study the geometric
optimal design of the end region of a power transformer to com-
pare its performances with other well designed optimizers [5].
The goal of this case study is to reduce the maximum electric
fields to avoid unnecessary flashovers in the transformer [5].
Therefore, this design problem is formulated as

min  Eax(x)

Subject to Tip S €T, S Tia (Z = 1, 2, e ,4) (9)
where F,,.« is the maximum value of the electric field in the end
region; z; is the width of the electrostatic rings of the winding;
x; (i = 2,3,4) is the width of the spacer 4 (Fig. 1).

The end fields are computed by using finite element method.
The boundary value problem is

o Do
Z ¥ Zr_0
o2 +€8y2
<P|51=07 Q0|53=17 090/07”52 =0. (10)
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Fig. 1. Schematic diagram of the end region of the transformer being studied.

TABLE II
OPTIMIZED RESULTS OF A 63 MVA 110 kV POWER TRANSFORMER

Algorithms ~ x;(mm) x,(mm) x3(mm) x4(mm) Iterations objective
Initial value 42.0 62.0 88.0 112.0 / 1.00
Proposed 39.9 40.3 85.8 120.5 2032 0.90
Tabu 41.1 39.6 86.1 113.1 1836 0.90
SL-SA 40.5 39.8 85.0 112.2 3475 0.91

In the numerical experiment, the proposed PBIL, a
self-learning simulated annealing (SL-SA) [6], and a tabu
search methods [5] are used to study this problem, and every
optimal method will stop its iterative process once the number
of successive iterations without improvements in the best
objective function value searched so far reaches 50.

The geometry optimization results of the end region of a 63
MVA, 110 kV transformer using the aforementioned three op-
timal methods are given in Table II. The iteration numbers for
different optimal methods are the average values of their 10 re-
spective runs. It should also be noted that the values of the ob-
jective function given in the table are the results of one typical
run, and measured in relative sense, using the maximum electric
field of the solution region for the un-optimized end geometry
as the base value. From these numerical results it can be seen
that:

1) in terms of the solution quality, the proposed PBIL method
is virtually the same as that of the tabu search algorithm,
and is slightly more superior to the self-learning SA algo-
rithm; however, the differences between the optimal results
obtained using the three methods are negligibly small, in
the range of about 1.1% only;

2) in terms of computation efficiency, the proposed PBIL
method is comparable to that of the tabu algorithm, and
significantly outperforms the self-learning simulated an-
nealing algorithms because the average iteration number
used by the former is less than 60% of that by the latter.
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In summary, the robustness and effectiveness of the pro-
posed algorithm for solving general electromagnetic inverse
problems are validated using the primary numerical results as
experimented in this case study.

IV. CONCLUSION

A new implementation of the PBIL method is proposed in this
paper. The numerical results on both mathematical test func-
tions and engineering design problems show:

1) The introduction of multiple probability vectors has in-
creased the diversity of the population significantly, re-
sulting in an enhancement in the global search ability of
the algorithm;

2) The proposed adaptive updating strategy of the learning
rates has equipped the algorithm with the ability to strike
the best balance between exploration and exploitation
searches, resulting in a reduction in iteration numbers
while preserving the desired global search ability.

Therefore, the presented work provides an attractive alterna-
tive for both academicians and engineers when they have to deal
with very challenging global optimization problems.
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