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A Self-Learning Simulated Annealing Algorithm for
Global Optimizations of Electromagnetic Devices

Shiyou Yang, Jose Marcio Machado, Guangzheng Ni, S. L. Ho, and Ping Zhou

Abstract—A self-learning simulated annealing algorithm is
developed by combining the characteristics of simulated annealing
and domain elimination methods. The algorithm is validated
by using a standard mathematical function and by optimizing
the end region of a practical power transformer. The numerical
results show that the CPU time required by the proposed method
is about one third of that using conventional simulated annealing
algorithm.

Index Terms—Domain elimination method, global optimization,
self-learning ability, simulated annealing algorithm.

I. INTRODUCTION

GENERALLY the optimization of electromagnetic
problems can be classified commonly as constrained,

multimodal, and nonlinear programming ones. To determine
a local optimum point, one only needs to test if it satisfies
the Karush–Kuhn–Tucker conditions which arise from the
first-order necessary conditions. But for a global optimum
point, there is no mathematical condition to characterize the
differences between global and local ones. Therefore, the global
optimization problems are much harder to solve. Many authors
have even concluded that this kind of problems is unsolvable
from a mathematical point of view. Thanks to developments
both in computer science and numerical techniques, one could
however use numerical approaches to find an approximate
solution in practice.

Robust algorithms for local minimization are well developed
and are readily available. For global optimization problems, the
competitive performance of “general purpose” optimization al-
gorithms concerning both the robustness and the speed is still a
challenging topic, although several stochastic algorithms such
as simulated annealing, genetic, and tabu search methods, all
have been investigated and applied in the literatures [1]–[4].
Nevertheless, the convergence speeds of all these algorithms are
still very low. Therefore it is essential to search for improved
global optimization methods. One feasible approach for devel-
oping new algorithms is to combine the conventional global op-
timization algorithms in such a way that their offsprings are su-
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perior to their ancestors in terms of both robustness and conver-
gence speeds.

This paper focuses on the development of a self-learning sim-
ulated annealing (SA) algorithm. For this purpose, the concept
of the memorization of the previously searched history are in-
corporated into conventional simulated annealing algorithms.
Numerical applications of the proposed algorithm demonstrate
its superiority over traditional SA methods.

II. SELF-LEARNING SIMULATED ANNEALING ALGORITHM

As it is well known, SA algorithm is a Markov chain Monte
Carlo method, and is therefore, memoryless. By definition, the
distribution of the random variable is mediated entirely
by the value of : the past history does not influence the cur-
rent move, i.e. the information accumulated in the searched pa-
rameter space is not used to guide the generation of new states.
This will, however, be very computationally inefficient, espe-
cially in the case where new states are very near or equal to
previously searched ones. Thus different studies on the memo-
rization of the searched spaces are reported [7].

As with other stochastic methods, the domain elimination
method has also two phases, the global phase where the cost
function is evaluated at a number of randomly sampled points in
the feasible domain, and a local phase where the sample points
are manipulated (by means of local search) to yield a candidate
global points. This algorithm can be viewed as a modification
of a multi-start procedure but, unlike simulated annealing, it has
the ability to learn as the search progresses by means of com-
paring the new states with those memorized in the sets such
as the starting point set, the local minimum point set, the re-
jected point set, etc. Hence the proposed algorithm is expected
to be more efficient. The details about this method are already
reported in [5] and in a complementary paper written by the au-
thors [6].

Motivated by the novel characteristics of domain elimination
method, the inclusion of the memorization of the searched his-
tories into conventional SA algorithms is reported in this paper.
Hence the proposed algorithm would then have self-learning
abilities during the searching process. In order to improve the
search efficiency, a local phase is also introduced into the self-
learning SA algorithm.

A. History Memorization

Just as mentioned before, one of the main disadvantages of
the conventional simulated annealing algorithm is the “blind-
ness” in generating new random moves. In other words, the al-
gorithm does not “know” whether the new random moves had
been explored previously, or whether they can lead to some new
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local optima. In order to improve the searching efficiency, one
should try to develop an enhanced algorithm which does pos-
sess a self-learning or memorization ability. The memorization
of the searched subspaces in the parameter spaces is realized by
memorizing the following sets in this paper:

Starting point set: is a starting point
when executing a local optimization procedure.

Local optimum set: is a local optimum
point searched by the local optimization procedure

Trajectory set: ;
is the th sample point in theth

trajectory from the start point to the th local optimum
point .

Here the trajectory means the searching history of the
local optimization procedure from a starting point to the
corresponding local optimum point. For practical engineering
problems, there could be many different trajectories meeting at
one local optimum point.

B. Rejection of Random Moves

In order to determine if a new random move (point) has al-
ready been searched or if it can lead to a new local optimum,
the random point, denoted using, is compared with the points
stored in the three sets , , and . If it is equal to or near
a point or a line segment of some trajectories comprising any
of the three mentioned sets, i.e., the distance between them is
within a certain critical value, the proposed point is discarded
and a new random point is generated again. Only if the dis-
tances from the proposed points to all the points or trajectory
segments of the aforementioned sets satisfy the distance condi-
tion, the self-learning SA algorithm can start from this point to
begin a new cycle of iterations. Such checking avoids unneces-
sary minimization steps that would otherwise lead to an already
known local optima, and tends to enforce the algorithm to ex-
plore the un-searched subspaces. Hence unnecessary computa-
tions are avoided with no negative effects. Since the generation
of a random point and the evaluation of it are much cheaper
than beginning a new iterative cycle with this kind of points, the
self-learning SA algorithm will increase the computation effi-
ciency and enhance significantly the chance of finding a new
local optimum in the unexplored parameter spaces.

C. Trajectory Representation and Distance Computation

A trajectory is represented by passing linear straight-line seg-
ments through the sampled points along the trajectory in this
paper. In order to reduce the storage requirements, the procedure
will store the points once after every points. When checking
the proximity of two points, a hyper-prism around the specified
point (a point belonging to one of the three sets mentioned
above) is constructed. The proposed pointis rejected if it
lies inside the hyper-prism. In checking the distance between a
proposed point and a trajectory, the distance from the proposed
point to the nearest line section of the trajectory is used. The
proposed point is rejected if this distance is smaller than a crit-
ical distance .

D. Speed up Comparison Efficiency

Although the CPU time required for comparing the distances
between the random moves and points or trajectory segments
stored in the three aforementioned sets are very small compared
with those needed for starting new iterative cycles with this kind
of points, the accumulation of the overall time is still significant,
especially for the case where the quantities in the three sets are
very large. In order to reduce the computing time, the following
approaches are proposed:

1) the quantities of set and set are stored in a sequence
from the maximum to the minimum values of the cost
functions;

2) the trajectories of set are stored in such a way that
the cost function values of the starting points are reduced
sequentially;

3) Besides storing the variableand the corresponding cost
function for those points of and , an additional vari-
able, which is the sum of every point in all directions, de-
noted as , is also memorized.

Due to the nature of the data structures as defined by (1) and
(2), one can use the well known fast comparison algorithms such
as bisect search algorithm to reduce the comparison space of
sets , and significantly. For the subspaces reduced by
the fast search algorithms, one can further reduce the subspace
by discarding those points whose do not agree with that of
the random move. Hence the CPU time needed to carry out the
comparisons will be reduced further.

Moreover, there could be substantial differences in the order
of magnitudes for the various directional variables. For example,
the range for a variable in theth direction may be in the order
of , whereas its value in the th direction is of the
order of , then even a very significant variation in theth
direction variable may not lead to any significant changes in the
computed distances mentioned in Section II-B or in the variable

. Hence the search will be much more efficient when one
uses the per unit values of the variables.

E. Description of the Self-Learning SA Algorithm

The self-learning SA algorithm as proposed can thus be sum-
marized in the following steps:

STEP 0
(initialization) Select a value for the parameter that spec-

ifies the number of local search iterations to
be performed to determine an intermediate
point ; Empty the sets , , and ;
Set the initial values for other iteration pa-
rameters; Generate an initial feasible point

and compute the cost function ; Let
;

STEP 1 Starting from point , generate a random
point ;

STEP 2 If point is in or near or , or if it is
inside or near a trajectory in , then go to
Step 1; Else add to and go to the next
Step;

STEP 3 Execute a local minimization procedure up
to iterations; If the local minimization
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procedure yields a new local optimum point
, then store the trajectory from to

after every intermediate points, then go to
Step 4; Else go to Step 4 directly;

STEP 4 If or is within or near or ,
or if it is within or near a trajectory in

, go to Step 7 directly; Otherwise, ac-
cept or with the probability min

(here
or , and is the
control parameter of the simulated annealing
algorithm);

STEP 5 If or is accepted, then set
or and go to Step 6; Else go to Step
6 directly;

STEP 6 If or then set
or , and let

or ;
STEP 7 Test the equilibrium of the Metropolis

process; If the test is passed, go to Step 8;
Else go to Step 1;

STEP 8 Test the terminating criterion. If test is passed,
go to Step 9; Else reduce the value of the con-
trol parameter, let , and go to Step
1;

STEP 9 Output , , and terminates the pro-
gram.

III. N UMERICAL RESULTS

A mathematical test function and a practical engineering
problem are used to evaluate the performance of the proposed
Self-Learning SA (SL–SA) algorithm.

A. Mathematical Function

The mathematical test function selected in this paper is

minimize

subject to

The function has roughly local optima and the global one
is at with .

Table I gives the optimization results obtained by using
SL–SA and the traditional SA from different initial starting
points. From these results it can be seen that:

1) Both the present SL–SA and the conventional SA algo-
rithms converge to the global optimum;

2) The function calls used by the proposed method is about
one third of that used by conventional SA algorithm, but
the CPU time used by the proposed method is more than
one half of that used by the conventional SA algorithm.
This is because additional CPU time is needed to compare
the random moves with the memorized search histories.

TABLE I
OPTIMIZATION RESULT COMPARISON OFDIFFERENTMETHODS

Fig. 1. Schematic diagram of the end region of the transformer being studied.

TABLE II
OPTIMIZATION RESULTS AND COMPARISONS

B. Application

The realization of minimizing the maximum electric fields in
the end region of power transformers under normal and faulty
operating conditions is of paramount importance for the de-
signers, since a reduction in the maximum electric fields would
prevent the transformer from unnecessary flashovers. The op-
timization problem is thus to determine the optimal geomet-
rical parameters of the end region so as to have an ideal electric
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field distribution. Although there are many optimization algo-
rithms reported in the literatures, the number of suitable algo-
rithms that can be used to solve such problem is very few due
to the multi-modal nature of the objective function. Hence this
problem is selected as the benchmark problem for the assess-
ment of the proposed method. Here the geometrical optimiza-
tion problem is formulated as

subject to (1)

where
is the maximum value of the electric field in
the end region,
is the width of the electrostatic rings of the
winding and
is the width of the spacer, as shown in
Fig. 1.

The end fields are computed by using finite element method.
The boundary value problem is

(2)

The geometry optimization results of the end region of a 63
MVA, 110 kV transformer using the proposed SL–SA, the tra-
ditional SA, and a simplex algorithms are given in Table II.
The CPU times for the SL–SA and SA algorithms are the mean
values of their 10 respective runs. The positions in which the
maximum electric density occurs with the initial geometry and
the optimized geometry are depicted, respectively, in Fig. 2(a)
and (b). From these results it can be seen that:

1) The proposed and the conventional SA algorithms con-
verge to almost the same global optimum point and solu-
tion;

2) The percentage value of the CPU time used by the pro-
posed method to that used by the traditional SA algorithm
is significantly reduced when compared with that for the
mathematical test function, because the additional CPU
time used by the proposed method for the history memo-
rization and comparison is relatively small compared with
those required for finite element method calculations.

3) The simplex method cannot find the global solution.
4) The maximum value of the electric field with the opti-

mized geometry decreases from 1 pu to 0.91 pu and the
position in which the maximum electric field occurs is
moved from point to point .

IV. CONCLUSION

By incorporating a feature that includes the memorization of
the searched parameter spaces into the proposed algorithm and
by introducing a local phase to the conventional simulated an-
nealing algorithm, a new self-learning simulated annealing al-
gorithm is reported in this paper.

The numerical results on both the mathematical test and en-
gineering problems show:

Fig. 2. The position of the maximum electric density.

1) The incorporation of memorization of the searched histo-
ries into the conventional SA algorithm do enable the pro-
posed algorithm to have self-learning ability in the search
process.

2) The reduction in the value of the mean CPU time re-
quired for the proposed method is very significant for in-
verse problems encountered in the study of electromag-
netics, since the additional CPU time needed for the his-
tory memorization and comparison is very small com-
pared to those needed for the numerical calculations of
electromagnetic fields.

3) The inclusion of memorization features in the searched
histories of the parameter spaces could be incorpo-
rated into other stochastic algorithms for improving the
searching efficiency of these methods.
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