52 research outputs found

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data

    Get PDF
    Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an external signal. The model provides the basis of an experimental method to determine the architecture of such pathways, and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ∼80% of the known relationships without any false positives

    The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres

    Get PDF
    Over the last twenty years, the search for extrasolar planets revealed us the rich diversity of the outcomes of the formation and evolution of planetary systems. In order to fully understand how these extrasolar planets came to be, however, the orbital and physical data we possess are not enough, and they need to be complemented with information on the composition of the exoplanets. Ground-based and space-based observations provided the first data on the atmospheric composition of a few extrasolar planets, but a larger and more detailed sample is required before we can fully take advantage of it. The primary goal of the Exoplanet Characterization Observatory (EChO) is to fill this gap, expanding the limited data we possess by performing a systematic survey of hundreds of extrasolar planets. The full exploitation of the data that EChO and other space-based and ground-based facilities will provide in the near future, however, requires the knowledge of what are the sources and sinks of the chemical species and molecules that will be observed. Luckily, the study of the past history of the Solar System provides several indications on the effects of processes like migration, late accretion and secular impacts, and on the time they occur in the life of planetary systems. In this work we will review what is already known about the factors influencing the composition of planetary atmospheres, focusing on the case of gaseous giant planets, and what instead still need to be investigated.Comment: 26 pages, 9 figures, 1 table. Accepted for publication on Experimental Astronomy, special issue on the M3 EChO mission candidat

    Evolution of Interstellar Ices

    Full text link
    Abstract. Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and proba-bly H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, inter-stellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ pho-tochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs read-ily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ke-tones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species simila

    Opting in and opting out: a grounded theory of nursings contribution to inpatient rehabilitation

    Full text link
    Aim: To develop a grounded theory of nursing&rsquo;s contribution to patient rehabilitation from the perspective of nurses working in inpatient rehabilitation.Design: Grounded theory method, informed by the theoretical perspective of symbolic interactionism, was used to guide data collection and analysis, and the development of a grounded theory.Setting: Five inpatient rehabilitation units in Australia.Participants: Thirty-five registered and 18 enrolled nurses participated in audio-taped interviews and/or were observed during periods of their everyday practice.Findings: The analysis revealed a situation whereby nurses made decisions about when to &lsquo;opt in&rsquo; and when to &lsquo;opt out&rsquo; of inpatient rehabilitation. This occurred on two levels: with their interaction with patients and allied health professionals, and when faced with negative system issues that impacted on their ability to contribute to patient rehabilitation. The primary contribution nurses made to inpatient rehabilitation was working directly with patients, enabling them to self-care. Nurses coached patients when their decisions about &lsquo;opting in&rsquo; and &lsquo;opting out&rsquo; were based on assessment of the person in their particular context. In contrast, the nurses mostly distanced themselves from system-based problems, &lsquo;opting out&rsquo; of addressing them. They did this not to make their working lives easier, but more manageable.Conclusion: System-based problems impacted negatively on the nurses&rsquo; ability to deliver comprehensive rehabilitation care. As a consequence, some nurses felt unable to influence the care and they withdrew professionally to make their work lives more manageable.<br /
    corecore