358 research outputs found

    On the nature of the omega tri-layer periodicity in rapidly cooled Ti-15Mo

    Get PDF
    High angle annular dark field (HAADF) images of the omega phase in metastable beta titanium alloys exhibit tri-layered periodicity. However, it is unclear if this indicates preferential site occupation, or is related to the structural modification of omega formation. Here, the periodicity was studied using a combination of HAADF imaging and electron energy loss spectroscopy. The results show that there is no preferential site occupancy or ordering and that the observed intensity variations are related to the imaging conditions.This work was supported by the Rolls-Royce/EPSRC Strategic Partnership (EP/H022309/1, EP/H500375/1 & EP/M005607/1).This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S1359646215002213

    Anomalous diffusion of single metal atoms on a graphene oxide support

    Get PDF
    Recent studies of single-atom catalysts open up the prospect of designing exceptionally active and environmentally efficient chemical processes. The stability and durability of such catalysts is governed by the strength with which the atoms are bound to their support and their diffusive behaviour. Here we use aberration-corrected STEM to image the diffusion of single copper adatoms on graphene oxide. We discover that individual atoms exhibit ano malous diffusion as a result of spatial and energetic disorder inherent in the support, and interpret the origins of this behaviour to develop a physical picture for the surface diffusion of single metal atoms

    Dimensions of professional competences for interventions towards sustainability

    Get PDF
    This paper investigates sustainability competences through the eyes of professional practitioners in the field of sustainability and presents empirical data that have been created using an action research approach. The design of the study consists of two workshops, in which professional practitioners in interaction with each other and the facilitators are invited to explore and reflect on the specific knowledge, skills, attitudes and behaviours necessary to conduct change processes successfully towards sustainability in a variety of business and professional contexts. The research focuses on the competences associated with these change processes to devise, propose and conduct appropriate interventions that address sustainability issues. Labelled ‘intervention competence’, this ability comprises an interlocking set of knowledge, skills, attitudes and behaviours that include: appreciating the importance of (trying to) reaching decisions or interventions; being able to learn from lived experience of practice and to connect such learning to one’s own scientific knowledge; being able to engage in political-strategic thinking, deliberations and actions, related to different perspectives; the ability for showing goal-oriented, adequate action; adopting and communicating ethical practices during the intervention process; being able to cope with the degree of complexity, and finally being able to translate stakeholder diversity into collectively produced interventions (actions) towards sustainability. Moreover, this competence has to be practised in contexts of competing values, non-technical interests and power relations. The article concludes with recommendations for future research and practice

    Using honey to heal diabetic foot ulcers

    Get PDF
    Diabetic ulcers seem to be arrested in the inflammatory/proliferative stage of the healing process, allowing infection and inflammation to preclude healing. Antibiotic-resistant bacteria have become a major cause of infections, including diabetic foot infections. It is proposed here that the modern developments of an ancient and traditional treatment for wounds, dressing them with honey, provide the solution to the problem of getting diabetic ulcers to move on from the arrested state of healing. Honeys selected to have a high level of antibacterial activity have been shown to be very effective against antibiotic-resistant strains of bacteria in laboratory and clinical studies. The potent anti-inflammatory action of honey is also likely to play an important part in overcoming the impediment to healing that inflammation causes in diabetic ulcers, as is the antioxidant activity of honey. The action of honey in promotion of tissue regeneration through stimulation of angiogenesis and the growth of fibroblasts and epithelial cells, and its insulin-mimetic effect, would also be of benefit in stimulating the healing of diabetic ulcers. The availability of honey-impregnated dressings which conveniently hold honey in place on ulcers has provided a means of rapidly debriding ulcers and removing the bacterial burden so that good healing rates can be achieved with neuropathic ulcers. With ischemic ulcers, where healing cannot occur because of lack of tissue viability, these honey dressings keep the ulcers clean and prevent infection occurring

    Effects of storage temperature on the change in size of Calliphora vicina larvae during preservation in 80% ethanol

    Get PDF
    The size of immature blowflies is a common measure to estimate the minimum time between death and the discovery of a corpse, also known as the minimum post-mortem interval. This paper investigates the effects of preservation, in 80% ethanol, on the length and weight of first instar, second instar, feeding third instar, and post-feeding third instar Calliphora vicina larvae, at three different storage temperatures. For each larval stage, the length of larvae was recorded after 0 h, 3 h, 6 h, 9 h, 12 h, 24 h, 72 h, 7 days, 14 days, 30 days, 91 days, 182 days, 273 days, and 365 days of storage in 80% ethanol, at −25°C, 6°C and 24°C. Storage temperature had no statistically significant effect on the change in larval length and weight for all larval stages, but larval length and weight were significantly affected by the duration of preservation for first, second, and feeding third instar larvae, but not for post-feeding larvae. Generally, first and second instar larvae reduced in size over time, while feeding third instar larvae increased slightly in size, and post-feeding larvae did not change in size over time. The length of blowfly larvae preserved in 80% ethanol is not affected by constant storage temperatures between −25°C and +24°C, but we recommend that forensic entomologists should use the models provided to correct for changes in larval length that do become apparent over time.Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Charge ordered ferromagnetic phase in La0.5Ca0.5MnO3

    Full text link
    Mixed valent manganites are noted for their unusual magnetic,electronic and structural phase transitions. The La1-xCaxMnO3 phase diagram shows that below transition temperatures in the range 100-260 K, compounds with 0.2 < x < 0.5 are ferromagnetic and metallic whereas those with 0.5 < x < 0.9 are antiferromagnetic and charge ordered. In a narrow region around x = 0.5, these totally dissimilar states are thought to coexist. Uehara et al. have shown that charge order and charge disorder can coexist in the related compound La0.25Pr0.375Ca0.375MnO3. Here, we present electron microscopy data for La0.5Ca0.5MnO3 that sheds light on the distribution of coexisting phases and uncovers a novel and unexpected phase. Using electron holography and Fresnel imaging, we find micron sized ferromagnetic regions spanning several grains coexisting with similar sized regions with no local magnetisation. Holography shows that the ferromagnetic regions have a local magnetisation of 3.4 +- 0.2 mB/Mn (the spin aligned value is 3.5 mB/Mn). We use electron diffraction and dark field imaging to show that charge order exists in regions with no net magnetisation and, surprisingly, can also occur in ferromagnetic regions.Comment: 5 pages of pdf with 2 figures include

    Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community

    Get PDF
    Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site) and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a “neutral-like” pattern maintained by niche-differentiation

    Stabilization of Single Metal Atoms on Graphitic Carbon Nitride

    Get PDF
    Graphitic carbon nitride (g-C3_{3}N4_{4}) exhibits unique properties as a support for single-atom heterogeneous catalysts (SAHCs). Understanding how the synthesis method, carrier properties, and metal identity impact the isolation of metal centers is essential to guide their design. This study compares the effectiveness of direct and postsynthetic routes to prepare SAHCs by incorporating palladium, silver, iridium, platinum, or gold in g-C3_{3}N4_{4} of distinct morphology (bulk, mesoporous and exfoliated). The speciation (single atoms, dimers, clusters, or nanoparticles), distribution, and oxidation state of the supported metals are characterized by multiple techniques including extensive use of aberration-corrected electron microscopy. SAHCs are most readily attained via direct approaches applying copolymerizable metal precursors and employing high surface area carriers. In contrast, although post-synthetic routes enable improved control over the metal loading, nanoparticle formation is more prevalent. Comparison of the carrier morphologies also points toward the involvement of defects in stabilizing single atoms. The distinct metal dispersions are rationalized by density functional theory and kinetic Monte Carlo simulations, highlighting the interplay between the adsorption energetics and diffusion kinetics. Evaluation in the continuous three-phase semihydrogenation of 1-hexyne identifies controlling the metal-carrier interaction and exposing the metal sites at the surface layer as key challenges in designing efficient SAHCs.The authors are grateful to the following people for support: Dr. G. Vilé for fruitful discussion, Dr. R. Verel for NMR measurements, Dr. C. Zaubitzer for TEM training, and Dr. J. Barnard for assistance with microscopy studies. ScopeM at ETH Zurich for use of their facilities. This research has received funding from the Swiss National Science Foundation (grant number 200021_169679) and the European Union’s Seventh Framework Programme (grant numbers 291522 - 3DIMAGE and 31 2483 - ESTEEM2). R.K.L. acknowledges a Junior Research Fellowship from Clare College. The SuperSTEM Laboratory is the UK National Facility for Aberration - Corrected STEM, supported by the Engineering and Physical Sciences Research Council (EPSRC). Thanks to BSC - RES for providing generous computational resources

    Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide

    Get PDF
    Mediterranean climate is found on five continents and supports five global biodiversity hotspots. Based on combined downscaled results from 23 atmosphere-ocean general circulation models (AOGCMs) for three emissions scenarios, we determined the projected spatial shifts in the mediterranean climate extent (MCE) over the next century. Although most AOGCMs project a moderate expansion in the global MCE, regional impacts are large and uneven. The median AOGCM simulation output for the three emissions scenarios project the MCE at the end of the 21st century in Chile will range from 129–153% of its current size, while in Australia, it will contract to only 77–49% of its current size losing an area equivalent to over twice the size of Portugal. Only 4% of the land area within the current MCE worldwide is in protected status (compared to a global average of 12% for all biome types), and, depending on the emissions scenario, only 50–60% of these protected areas are likely to be in the future MCE. To exacerbate the climate impact, nearly one third (29–31%) of the land where the MCE is projected to remain stable has already been converted to human use, limiting the size of the potential climate refuges and diminishing the adaptation potential of native biota. High conversion and low protection in projected stable areas make Australia the highest priority region for investment in climate-adaptation strategies to reduce the threat of climate change to the rich biodiversity of the mediterranean biome
    corecore