1,490 research outputs found

    Spinning Conformal Correlators

    Get PDF
    We develop the embedding formalism for conformal field theories, aimed at doing computations with symmetric traceless operators of arbitrary spin. We use an index-free notation where tensors are encoded by polynomials in auxiliary polarization vectors. The efficiency of the formalism is demonstrated by computing the tensor structures allowed in n-point conformal correlation functions of tensors operators. Constraints due to tensor conservation also take a simple form in this formalism. Finally, we obtain a perfect match between the number of independent tensor structures of conformal correlators in d dimensions and the number of independent structures in scattering amplitudes of spinning particles in (d+1)-dimensional Minkowski space.Comment: 46 pages, 3 figures; V2: references added; V3: tiny misprint corrected in (A.9

    Insufficient Stability of Clavulanic Acid in Widely Used Child-Appropriate Formulations.

    Get PDF
    Amoxicillin-clavulanic acid (AMC) belongs to the WHO Essential Medicines List for children, but for optimal antimicrobial effectiveness, reconstituted dry powder suspensions need to be stored in a refrigerated environment. Many patients in low- and middle-income countries who are sold AMC suspensions would be expected not to keep to the specified storage conditions. We aimed to assess the stability of both ingredients in liquid formulations and dispersible tablets, combined with nationally representative data on access to appropriate storage. Degradation of amoxicillin (AMX) and clavulanic-acid (CLA) was measured in suspensions and dispersible tablets commercially available in Switzerland at different ambient temperatures (8 °C vs. 28 °C over 7 days, and 23 °C vs. 28 °C over 24 h, respectively). Data on access to refrigeration and electricity were assessed from the USAID-funded Demographic and Health Survey program. In suspensions, CLA degraded to a maximum of 12.9% (95% CI -55.7%, +29.9%) at 8°C and 72.3% (95% CI -82.8%, -61.8%) at a 28 °C ambient temperature during an observation period of 7 days. Dispersible tablets were observed during 24 h and CLA degraded to 15.4% (95% CI -51.9%, +21.2%) at 23 °C and 21.7% (-28.2%, -15.1%) at a 28 °C ambient temperature. There is relevant degradation of CLA in suspensions during a 7-day course. To overcome the stability challenges for all active components, durable child-appropriate formulations are needed. Until then, prescribers of AMC suspensions or pharmacists who sell the drug need to create awareness for the importance of proper storage conditions regarding effectiveness of both antibiotics and this recommendation should be reflected in the WHO Essential Medicines List for children

    Multitrace deformations, Gamow states, and Stability of AdS/CFT

    Full text link
    We analyze the effect of multitrace deformations in conformal field theories at leading order in a large N approximation. These theories admit a description in terms of a weakly coupled gravity dual. We show how the deformations can be mapped into boundary terms of the gravity theory and how to reproduce the RG equations found in field theory. In the case of doubletrace deformations, and for bulk scalars with masses in the range −d2/4<m2<−d2/4+1-d^2/4<m^2<-d^2/4+1, the deformed theory flows between two fixed points of the renormalization group, manifesting a resonant behavior at the scale characterizing the transition between the two CFT's. On the gravity side the resonance is mapped into an IR non-normalizable mode (Gamow state) whose overlap with the UV region increases as the dual operator approaches the free field limit. We argue that this resonant behavior is a generic property of large N theories in the conformal window, and associate it to a remnant of the Nambu-Goldstone mode of dilatation invariance. We emphasize the role of nonminimal couplings to gravity and establish a stability theorem for scalar/gravity systems with AdS boundary conditions in the presence of arbitrary boundary potentials and nonminimal coupling.Comment: 14 pages, references added, introduction change

    The Dawn of Open Access to Phylogenetic Data

    Get PDF
    The scientific enterprise depends critically on the preservation of and open access to published data. This basic tenet applies acutely to phylogenies (estimates of evolutionary relationships among species). Increasingly, phylogenies are estimated from increasingly large, genome-scale datasets using increasingly complex statistical methods that require increasing levels of expertise and computational investment. Moreover, the resulting phylogenetic data provide an explicit historical perspective that critically informs research in a vast and growing number of scientific disciplines. One such use is the study of changes in rates of lineage diversification (speciation - extinction) through time. As part of a meta-analysis in this area, we sought to collect phylogenetic data (comprising nucleotide sequence alignment and tree files) from 217 studies published in 46 journals over a 13-year period. We document our attempts to procure those data (from online archives and by direct request to corresponding authors), and report results of analyses (using Bayesian logistic regression) to assess the impact of various factors on the success of our efforts. Overall, complete phylogenetic data for ~60% of these studies are effectively lost to science. Our study indicates that phylogenetic data are more likely to be deposited in online archives and/or shared upon request when: (1) the publishing journal has a strong data-sharing policy; (2) the publishing journal has a higher impact factor, and; (3) the data are requested from faculty rather than students. Although the situation appears dire, our analyses suggest that it is far from hopeless: recent initiatives by the scientific community -- including policy changes by journals and funding agencies -- are improving the state of affairs

    Revealing Historic Invasion Patterns and Potential Invasion Sites for Two Non-Native Plant Species

    Get PDF
    The historical spatio-temporal distribution of invasive species is rarely documented, hampering efforts to understand invasion dynamics, especially at regional scales. Reconstructing historical invasions through use of herbarium records combined with spatial trend analysis and modeling can elucidate spreading patterns and identify susceptible habitats before invasion occurs. Two perennial species were chosen to contrast historic and potential phytogeographies: Japanese knotweed (Polygonum cuspidatum), introduced intentionally across the US; and mugwort (Artemisia vulgaris), introduced largely accidentally to coastal areas. Spatial analysis revealed that early in the invasion, both species have a stochastic distribution across the contiguous US, but east of the 90th meridian, which approximates the Mississippi River, quickly spread to adjacent counties in subsequent decades. In contrast, in locations west of the 90th meridian, many populations never spread outside the founding county, probably a result of encountering unfavorable environmental conditions. Regression analysis using variables categorized as environmental or anthropogenic accounted for 24% (Japanese knotweed) and 30% (mugwort) of the variation in the current distribution of each species. Results show very few counties with high habitat suitability (≥80%) remain un-invaded (5 for Japanese knotweed and 6 for mugwort), suggesting these perennials are reaching the limits of large-scale expansion. Despite differences in initial introduction loci and pathways, Japanese knotweed and mugwort demonstrate similar historic patterns of spread and show declining rates of regional expansion. Invasion mitigation efforts should be concentrated on areas identified as highly susceptible that border invaded regions, as both species demonstrate secondary expansion from introduction loci

    Isolation and Mechanical Measurements of Myofibrils from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    Get PDF
    Summary: Tension production and contractile properties are poorly characterized aspects of excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Previous approaches have been limited due to the small size and structural immaturity of early-stage hiPSC-CMs. We developed a substrate nanopatterning approach to produce hiPSC-CMs in culture with adult-like dimensions, T-tubule-like structures, and aligned myofibrils. We then isolated myofibrils from hiPSC-CMs and measured the tension and kinetics of activation and relaxation using a custom-built apparatus with fast solution switching. The contractile properties and ultrastructure of myofibrils more closely resembled human fetal myofibrils of similar gestational age than adult preparations. We also demonstrated the ability to study the development of contractile dysfunction of myofibrils from a patient-derived hiPSC-CM cell line carrying the familial cardiomyopathy MYH7 mutation (E848G). These methods can bring new insights to understanding cardiomyocyte maturation and developmental mechanical dysfunction of hiPSC-CMs with cardiomyopathic mutations. : In this article, Pioner and colleagues reported contractile properties of isolated myofibrils from hiPSC-CMs with highly mature morphology. This approach permits quantitative assessment of maturation and contractile properties of hiPSC-CMs and can be used to study the development of contractile dysfunction in genetically based cardiac diseases. The authors present a patient-derived cell line carrying a novel familial cardiomyopathy MYH7 mutation (E848G)

    Object Detection Through Exploration With A Foveated Visual Field

    Get PDF
    We present a foveated object detector (FOD) as a biologically-inspired alternative to the sliding window (SW) approach which is the dominant method of search in computer vision object detection. Similar to the human visual system, the FOD has higher resolution at the fovea and lower resolution at the visual periphery. Consequently, more computational resources are allocated at the fovea and relatively fewer at the periphery. The FOD processes the entire scene, uses retino-specific object detection classifiers to guide eye movements, aligns its fovea with regions of interest in the input image and integrates observations across multiple fixations. Our approach combines modern object detectors from computer vision with a recent model of peripheral pooling regions found at the V1 layer of the human visual system. We assessed various eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD performs on par with the SW detector while bringing significant computational cost savings.Comment: An extended version of this manuscript was published in PLOS Computational Biology (October 2017) at https://doi.org/10.1371/journal.pcbi.100574

    General Three-Point Functions in 4D CFT

    Get PDF
    We classify and compute, by means of the six-dimensional embedding formalism in twistor space, all possible three-point functions in four dimensional conformal field theories involving bosonic or fermionic operators in irreducible representations of the Lorentz group. We show how to impose in this formalism constraints due to conservation of bosonic or fermionic currents. The number of independent tensor structures appearing in any three-point function is obtained by a simple counting. Using the Operator Product Expansion (OPE), we can then determine the number of structures appearing in 4-point functions with arbitrary operators. This procedure is independent of the way we take the OPE between pairs of operators, namely it is consistent with crossing symmetry, as it should be. An analytic formula for the number of tensor structures for three-point correlators with two symmetric and an arbitrary bosonic (non-conserved) operators is found, which in turn allows to analytically determine the number of structures in 4-point functions of symmetric traceless tensors

    Gauge gravity duality for d-wave superconductors: prospects and challenges

    Full text link
    We write down an action for a charged, massive spin two field in a fixed Einstein background. Despite some technical problems, we argue that in an effective field theory framework and in the context of the AdS/CFT correspondence, this action can be used to study the properties of a superfluid phase transition with a d-wave order parameter in a dual strongly interacting field theory. We investigate the phase diagram and the charge conductivity of the superfluid phase. We also explain how possible couplings between the spin two field and bulk fermions affect the fermion spectral function.Comment: 42 pages, 6 figure
    • …
    corecore