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1 Introduction

One hardly needs to stress the importance of Conformal Field Theories (CFT) in theoretical

physics. In two dimensions, many exactly solvable models exist, thanks to the infinite

dimensional extension of the global conformal group, the Virasoro algebra. Unfortunately,

in three dimensions or higher, no equally efficient general approaches are known at present.

One approach which holds some promise is the ‘conformal bootstrap’ [1, 2], which

tries to solve or constrain a higher-dimensional CFT by imposing the Operator Product

Expansion (OPE) associativity. The efficiency of this method has been demonstrated in

several recent applications [3–11]. However, so far this approach has been limited to the

study of four-point functions of scalar operators. It is of great interest to extend this

technique to other operators like the stress-energy tensor or global symmetry currents.

This could provide very general constraints for any CFT or for CFTs with a given global

symmetry. In this paper, we give the first step towards this goal by developing an efficient

language to deal with primary tensor operators in CFT. Basically, our formalism makes

CFT computations with tensor fields as easy as computations with scalars. In an upcoming

paper [12], we shall use this formalism to obtain conformal blocks for four-point functions

of tensor operators.

Another motivation for this work is the recently found analogy between CFT correla-

tion functions written in the Mellin representation and scattering amplitudes [13, 14].1 This

analogy has been explored in detail in the case of CFT correlators defined holographically

by Witten diagrams of scalar field theories in AdS [14, 16, 17]. It would be very interesting

to find a generalization to correlators of tensor operators. The first steps towards this

goal were given in [16, 17]. It is natural to expect that such a generalization could lead

to recursion relations for the computation of stress-energy tensor correlators in CFTs with

AdS gravity duals,2 similar to the BCFW recursion relations for scattering amplitudes [20].

More generally, one might hope to use this analogy to translate all the powerful methods

for the computation of scattering amplitudes to CFT correlation functions (at least, for

CFTs with a weakly coupled AdS dual). We believe the formalism described in this paper

to deal with tensor operators will also be useful in this context.

In this paper, we test the analogy between d-dimensional conformal correlators and

(d + 1)-dimensional scattering amplitudes at the level of counting independent coupling

constants. More precisely, we show that the number of tensor structures for three point

correlators of tensor operators is equal to the number of tensor structures for three particle

S-matrix elements in one higher dimension. AdS/CFT provides a natural map from S-

matrix elements of the bulk theory to correlators of the boundary CFT. The idea is to define

the correlator by the contact Witten diagram with local interaction vertex associated with

the scattering amplitude. This map can be used to obtain CFT n-point correlators from

analytical n-particle S-matrix elements (contact interactions). However, for n > 3, the

scattering amplitudes can have poles associated with particle exchange diagrams. In this

case, some similarity seems to persist but it is not obvious how to define an explicit map.

1See also [15] for a connection between CFT anomalous dimensions and scattering amplitudes.
2See [18, 19] for a proposal based on momentum space correlators.
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Structure of the paper. The paper is built upon the embedding space formalism,

which we review in section 2. In this formalism [1, 21–26], correlators in Euclidean

d-dimensional space are uplifted to homogeneous functions on the lightcone of (d + 2)-

dimensional Minkowski spacetime, where the conformal group acts as the Lorentz group.

This goes a long way towards simplifying CFT computations, but in the case of tensor

fields it still falls short of our needs. In section 3, we develop a version of the embedding

formalism which encodes the index structure of the tensor operators in polynomials of a

‘polarization vector’ in (d+ 2)-dimensions. In section 4, we use the new index-free formal-

ism to compute constraints from conformal symmetry on correlators (3-, 4- and n-point

functions) of tensor operators of arbitrary spin. We are able to rederive in a simplified

and explicit way a number of known results, and to get some new ones. In section 5 we

show how to implement constraints on correlation functions of conserved tensors in our

language. In section 6 we discuss a rule which allows to count conformal n-point functions

in terms of on-shell scattering amplitudes of higher spin massive fields in (d+1)-dimensions

and, in case of conserved tensors, massless fields. For the case of three-point functions of

conserved operators with spin li in dimension d ≥ 4, this gives the number of allowed

tensor structures to be 1 + min(l1, l2, l3). Section 7 gives a summary of the new algorithm

for dealing with CFT correlation functions and concludes.

2 Embedding formalism

In this paper we consider CFT in d ≥ 3 Euclidean dimensions, so that the conformal group

is SO(d + 1, 1). All of our equations can be Wick-rotated to the Minkowski signature,

paying attention to the iε prescription. We assume that the reader is familiar with the

basics of the theory, see e.g. [27], chapter 4. As is well known, conformal symmetry imposes

strong constraints on the correlation functions of primary operators in the theory. These

constraints are relatively easy to work out for primary scalars, but they become less trans-

parent for primary fields of nonzero spin. In this section we will develop the ‘embedding

formalism’ which makes the nonzero spin case easier. The formalism has been applied on

and off since the early CFT days [23, 24]. We will take as a starting point a version used

recently in [25] (see also [26] for a recent discussion).3

The basic idea, due to Dirac [21], is that the natural habitat for the conformal group

SO(d + 1, 1) is the embedding space Md+2, where it can be realized as the group of linear

isometries. Thus, conformal symmetry constraints should become as trivial as Lorentz

symmetry constraints, provided all CFT fields can somehow be lifted to Md+2. The lift is

accomplished via a sort of stereographic projection; see figure 1. First, a point x ∈ Rd is

put in correspondence with a null ray in Md+2 consisting of the vectors

PA = λ
(
1, x2, xa

)
, λ ∈ R , (2.1)

where we use light cone coordinates

PA =
(
P+, P−, P a

)
, (2.2)

3Additional work using six-dimensional field equations to describe four-dimensional theories has been

done, e.g., in [28].
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Figure 1. Light cone in the embedding space; light rays are in one-to-one correspondence with

physical space points. The Poincaré section of the cone is also shown.

with metric given by4

P · P ≡ ηAB PAPB = −P+P− + δab P
aP b . (2.3)

Here and below, we use capital letters to denote embedding space (Md+2) quantities and

lower case letters to denote physical space (Rd) quantities.

Now, a linear SO(d+1, 1) transformation of Md+2 will map null rays into null rays, and

via eq. (2.1) this defines a map of the physical space Rd into itself, which turns out to be

a conformal transformation in the usual sense. Moreover, every conformal transformation

can be realized this way [21].

Next we should establish the correspondence between fields on Rd and Md+2, which

is done as follows. Consider a field FA1...Al(P ), a tensor of SO(d+ 1, 1), with the following

properties:

1. Defined on the cone P 2 = 0.

2. Homogeneous of degree −∆: FA1...Al(λP ) = λ−∆FA1...Al(P ), λ > 0.

3. Symmetric and traceless.

4. Transverse: (P · F )A2...Al ≡ PAFAA2...Al = 0.

Notice that all these conditions are manifestly SO(d + 1, 1)-invariant. Because of homo-

geneity, F is known everywhere on the cone once it is known on the Poincaré section,5

PAx = (1, x2, xa) , x ∈ Rd , (2.4)

4Here δab → ηab when Wick-rotating to the Minkowski spacetime signature.
5Other sections of the cone could be useful to study CFT on curved, conformally flat, backgrounds.
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whose vectors are in one-to-one correspondence with the points of Rd. Projecting F to the

Poincaré section defines a symmetric tensor field on Rd:6

fa1...al(x) =
∂PA1

∂xa1
. . .

∂PAl

∂xal
FA1...Al(Px) . (2.5)

This operation has two important properties. First, any tensor proportional to PA projects

to zero. We will call such SO(d + 1, 1) tensors pure gauge [23]. It is not difficult to show

that if two symmetric transverse tensors F and F ′ project to the same f , then they differ

by pure gauge (this is valid point by point on the Poincaré section).

Second, the projected tensor is traceless, as long as F is traceless and transverse. This

follows from the identity

KAB ≡ δab∂P
A

∂xa
∂PB

∂xb
= ηAB + PAx P̄

B + PBx P̄
A , P̄ = (0, 2, 0) , (2.6)

which is easily verified by using the explicit form of the projection matrices:

∂PA

∂xc
= (0, 2xc, δ

a
c ) . (2.7)

Given that any conformal transformation can be realized as an SO(d+ 1, 1) rotation,

and that F transforms as a tensor of SO(d + 1, 1), it makes sense to ask how f defined

by (2.5) transforms under the conformal group. It can be shown [24, 26]7 that this trans-

formation is exactly that of a spin l symmetric traceless primary field of dimension ∆. This

is actually not surprising. Since the f ↔ F correspondence is one-to-one up to pure gauge,

and since pure gauge goes into pure gauge under SO(d+ 1, 1), it is clear that we will have

a bona fide transformation of f in the sense that any ambiguity in lifting f to the cone will

drop out. But the Euclidean fields which transform into themselves under the conformal

group are exactly the primary fields. The only question is the interpretation of the ∆

parameter, and an explicit analysis shows that it has the meaning of the scaling dimension.

To summarize: instead of working with primary tensor fields in the physical space,

we can do the computations with tensor fields in Md+2, where SO(d + 1, 1) invariance is

manifest, and project the result to Rd using (2.5). Conformal invariance of the final result

will be automatic.

2.1 Correlators: simplest examples

The embedding formalism provides a shortcut to solving constraints imposed by conformal

symmetry on the form of CFT correlators. Consider e.g. the correlator of three primary

scalars 〈φ1(x1)φ2(x2)φ3(x3)〉 of dimensions ∆i. It can be obtained by projecting the em-

bedding correlator

〈Φ1(P1)Φ2(P2)Φ3(P3)〉 =
const

(P12)
∆1+∆2−∆3

2 (P23)
∆2+∆3−∆1

2 (P31)
∆3+∆1−∆2

2

, (2.8)

6Here and below, we omit the dependence of Px on x in ∂P/∂x, to avoid cluttering.
7Ref. [24] imposes a divergence-free condition to fix the pure gauge terms in F , which leads to unnecessary

complications.

– 5 –



J
H
E
P
1
1
(
2
0
1
1
)
0
7
1

where we define

Pij ≡ −2Pi · Pj . (2.9)

It’s easy to see that the written form of the correlator is the only one consistent with

the SO(d + 1, 1) invariance and the degree −∆i homogeneity of each Φi(Pi). For scalars,

projection to the physical space amounts to Pi → Pxi . Using the identity

− 2Pxi · Pxj = x2
ij (xij ≡ xi − xj) , (2.10)

we obtain the well-known result [29]

〈φ1(x1)φ2(x2)φ3(x3)〉 =
const

(x2
12)

∆1+∆2−∆3
2 (x2

23)
∆2+∆3−∆1

2 (x2
31)

∆3+∆1−∆2
2

. (2.11)

As a second example, consider the two-point function 〈va(x1)vb(x2)〉 of a dimension ∆

primary vector, described in the embedding formalism by the correlator

GAB(P1, P2) ≡ 〈VA(P1)VB(P2)〉 . (2.12)

GAB must be an SO(d+ 1, 1) tensor satisfying the following properties:

GAB(λP1, P2) = GAB(P1, λP2) = λ−∆GAB(P1, P2) , (2.13)

PA1 GAB(P1, P2) = 0 , PB2 GAB(P1, P2) = 0 , (2.14)

following from the homogeneity and transversality conditions obeyed by VA(P ). It is not

difficult to convince oneself that the most general such tensor has the form

GAB(P1, P2) =
1

(P12)∆

[
c1W̃AB + c2

P1AP2B

P1 · P2

]
, (2.15)

where

W̃AB = ηAB −
P1BP2A

P1 · P2
. (2.16)

(The reason for the tilde in W will become clear shortly.) It remains to project to the

physical space, using eqs. (2.5) and (2.7). The second term in GAB is pure gauge and

projects to zero. A short computation shows that W̃AB projects to

wab = δab − 2
(x12)a(x12)b

x2
12

, (2.17)

and we get the well-known result

〈va(x1)vb(x2)〉 = c1
wab

(x2
12)∆

. (2.18)

The spin 2 case is analogous but with more indices. The embedding space two-point

function is given by (up to pure gauge terms)8

GA1A2,B1B2(P1, P2)=
const

(P12)∆

[
1

2

(
W̃A1B1W̃A2B2 + W̃A1B2W̃A2B1

)
− 1

d
WA1A2WB1B2

]
, (2.19)

8The same expression with all W̃ ’s replaced by W ’s would work as well, differing only by pure gauge

terms. We choose the given form to facilitate comparison with projector Π′ used in eq. (3.25) below.
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where we introduced the symmetric tensor

WAB = ηAB −
P1BP2A + P1AP2B

P1 · P2
, (2.20)

differing from W̃ by a pure gauge term. Since both W and W̃ are transverse, so is the

above two-point function. To show that it is also traceless, notice that

ηA1A2WA1A2 = d , ηA1A2W̃A1B1W̃A2B2 = WB1B2 . (2.21)

Finally, the physical space two-point function is now obtained by projecting, which amounts

to replacing W, W̃ → w.

The generalization to higher l is, in principle, straightforward. The two-point function

can always be given by a symmetrized product of W̃AiBj with trace terms subtracted using

WAiAj . However, the computations become increasingly cumbersome due to the prolifera-

tion of indices, particularly if we wish to compute three-point and four-point functions. It

would be nice to have a more compact formalism, which for example would allow not to

keep track of the trace terms. That this should be possible is intuitively clear, since these

terms are not independent: they are fixed by the requirement of the overall tracelessness.

In the next section we will describe such a formalism, which also has the advantage of

being index-free.

3 Encoding tensors by polynomials

To begin, we will introduce a technique which allows us to represent symmetric tensors by

means of polynomials obtained by contracting the tensor with a reference vector. While

the basic idea is very simple, it requires some effort to develop an efficient formalism fully

taking into account the tracelessness and transversality conditions. The reader may prefer

to read backwards starting from the example given in section 3.3. The less essential parts

(proofs) are given in smaller font and can be skipped on the first reading.

3.1 Tensors in the physical space

The basic idea is that any symmetric tensor can be encoded by a d-dimensional polynomial:

fa1...al symmetric↔ f(z) ≡ fa1...alz
a1 · · · zal . (3.1)

The correspondence is clearly one-to-one: expanding the polynomial we recover the tensor.

In CFT, spin l primary fields are symmetric traceless tensors, for which a more econom-

ical encoding is available. Such a tensor can be fully encoded by restricting the respective

polynomial f(z) to the submanifold z2 = 0:9

fa1...al symmetric traceless↔ f(z)|z2=0. (3.2)

9Assuming z is complex.
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This fact can be formulated more fully as follows. Let fa1...al be a symmetric traceless

tensor, and f̃a1...al be another symmetric tensor such that the polynomials f̃(z) and f(z)

differ only by terms vanishing on z2 = 0:

f(z) = f̃(z) +O(z2). (3.3)

Then fa1...al can be recovered from f̃(z) (or from f̃a1...al , which is the same).

Intuitively, this can be justified as follows.10 Consider the projector onto symmetric

traceless tensors:

πa1...al,b1...bl = δa1(b1 · · · δ|al|bl) − traces . (3.4)

eq. (3.3) means that fa1...al and f̃a1...al can differ only by terms proportional to δaiaj . All

such terms will be subtracted away by the projector, and thus we will have:

fa1...al = πa1...al,b1...bl f̃
b1...bl . (3.5)

To summarize the discussion so far : we will present results for physical-space correla-

tors in terms of polynomials, not in terms of tensors. Moreover, we can and will drop any

polynomial terms explicitly proportional to z2. This gives a polynomial which encodes the

original symmetric traceless tensor in the sense of eq. (3.3). The dropped terms do not

create any ambiguity, as the original tensor can be recovered via (3.5).

For small values of l, the projector appearing in (3.5) is easy to work out explicitly,

e.g.

πa1a2,b1b2 =
1

2
(δa1b1δa2b2 + δa1b2δa2b1)− 1

d
δa1a2δb1b2 . (3.6)

The higher-spin projectors can be generated efficiently11 by the differential operator

of [32]12

Da =

(
h− 1 + z · ∂

∂z

)
∂

∂za
− 1

2
za

∂2

∂z · ∂z
, (3.7)

where we defined the shorthand h ≡ d/2. We then have

πa1...al,b1...bl =
1

l!(h− 1)l
Da1 · · ·Dalzb1 · · · zbl , (3.8)

where (a)l = Γ(a + l)/Γ(a) is the Pochhammer symbol. It follows that fa1...al can be

recovered from a f̃(z) by differentiation:

fa1...al =
1

l!(h− 1)l
Da1 · · ·Dal f̃(z) . (3.9)

10A mathematician’s proof that the correspondence (3.2) is one-to-one goes as follows. First, observe

that symmetric traceless tensors are mapped by (3.1) onto harmonic polynomials. Then, use the following

theorem (see [30], section 4.2): Any d-dimensional polynomial p(z) can be uniquely split as p(z) = p0(z) +

z2 p1(z), with p0(z) harmonic.
11An alternative is to use recursion relations, see e.g. [31].
12See [33] for a recent use of this operator in a similar context. It was also pointed out to us by Andrew

Waldron that this operator appears in the context of ‘tractor calculus’, where it is called the Thomas

operator [34].
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The Da operator is very convenient as it allows to perform operations on traceless

symmetric tensors directly in terms of the polynomials that encode them. For example,

consider two rank l symmetric traceless tensors f and g, encoded (in the sense of eq. (3.3))

by f̃(z) and g̃(z). Then their full contraction can be found by evaluating

fa1...alg
a1...al =

1

l!(h− 1)l
f̃(D)g̃(z) . (3.10)

If we need to free just one index but leave the rest contracted with z, this is done by

evaluating

faa2...alz
a2 · · · zal =

1

l(h+ l − 2)
Daf̃(z) +O(z2) , (3.11)

and so on.

We will just give a general idea of how these statements can be proven; see appendix A of [35]

for more details. It is crucial that Da is an ‘interior operator’ on the cone, which means that it

maps O(z2) functions to themselves:

h(z) = O(z2) =⇒ Dah(z) = O(z2) . (3.12)

In particular, we have

Daf̃(z) = Daf(z) +O(z2). (3.13)

Furthermore, tracelessness of f implies that the polynomial f(z) is harmonic. Thus the second

term in Da does not contribute to Daf , while the first term gives

Daf(z) =

(
h− 1 + z · ∂

∂z

)
∂

∂za
f(z) = (h+ l − 2)l faa2...al

za2 · · · zal , (3.14)

where we used the fact that z · ∂
∂z computes the homogeneity degree, l− 1 in this case. This proves

eq. (3.11); the other properties can be shown analogously.

3.2 Tensors in the embedding space

Next we will extend the above discussion to the embedding space. We can similarly encode

a general symmetric tensor in the embedding space by a (d+ 2)-dimensional polynomial

FA1...Al(P ) symmetric↔ F (P ;Z) ≡ FA1...Al(P )ZA1 . . . ZAl . (3.15)

This notation emphasizes that the tensors will in general depend on P .

Now let us consider the following diagram relating embedding and physical tensors

both with free indices and with encoding polynomials:

FA1...Al(P )
(3.15)

//

(2.5)
��

F (P ;Z)

��

fa1...al(x)
(3.1)

// f(x; z)

(3.16)

The dashed line denotes that there is a relation between the encoding polynomial of an

embedding tensor and its projection to the physical space. Using the explicit form of

∂P/∂x given in eq. (2.7), this relation takes the form

f(x; z) = F (Px;Zz,x), (3.17)

– 9 –
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where Zz,x ≡ (0, 2x · z, z) and has the properties

Zz,x · Px = 0 , Z2
z,x = z2 . (3.18)

Let us now specialize to tensors which are symmetric, traceless, and transverse (STT).

For such tensors, we can restrict the polynomial to the subset of Z’s satisfying Z2 = 0 and

Z · P = 0:

FA1...Al(P ) STT ↔ F (P ;Z)|Z2=0,Z·P=0 . (3.19)

More precisely, we mean the following. Let FA1...Al(P ) be STT and F̃A1...Al(P ) be any

tensor whose polynomial happens to agree with F (P ;Z) modulo terms proportional to Z2

and Z · P :

F (P ;Z) = F̃ (P ;Z) +O(Z2, Z · P ). (3.20)

Then FA1...Al(P ) can be recovered from F̃A1...Al(P ) up to pure gauge terms.

Indeed, as discussed in section 2, the tensor F can be recovered up to pure gauge from its

symmetric traceless projection f . Thus it is enough to show that f can be determined from f̃ ,

the projection of F̃ . To see the latter, let us project eq. (3.20) to the physical space. Using the

rule (3.17) and the properties (3.18), we obtain

f(x; z) = f̃(x; z) +O(z2), (3.21)

so f can indeed be recovered from f̃ by one of the methods from section 3.1.

Since it will prove useful in future applications, let us give a more explicit way to

recover an STT tensor FA1...Al(P ) from F̃A1...Al(P ) in the case that F̃ is transverse (but

not necessarily traceless). In this case the projection takes the form

FA1...Al = ΠA1...Al,B1...BlF̃
B1...Bl , (3.22)

where the projector Π is obtained from the projector π in eq. (3.5) by replacing

δaiaj →WAiAj ≡ ηAiAj −
PAiP̄Aj + PAj P̄Ai

P · P̄
, δbibj → ηBiBj , δaibj → ηAiBj . (3.23)

Here P̄ is as in eq. (2.6). The rule may look strange, since the projector π subtracts traces

in d dimensions, while Π must do this in d+ 2 dimension. This connection between π and

Π has to do with the assumed transversality of F̃ .

To prove that the above formula works, notice first of all that the tensor F as defined differs

from F̃ only by terms which are proportional to ηAiAj
or PAi

. Upon contraction with Z, this gives

terms of O(Z2, Z · P ), consistent with eq. (3.20). It remains to show that F is transverse and

traceless. To this end, consider a different projector Π′ obtained from π by a list of replacements

which contains some extra terms compared to (3.23):

δaiaj
→WAiAj

, δbibj →WBiBj
, δaibj → W̃AiBj

≡ ηAiBj
−
P̄AiPBj

P · P̄
. (3.24)

However, all the extra terms are proportional to PBi
, and will vanish when contracted with F̃ under

the assumption that it is transverse. For this reason we have an equivalent representation for F as

F = Π′F̃ . (3.25)
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In this form transversality and tracelessness are pretty easy to see. They just follow from the

transversality of W and W̃ , and from the relations (2.21) that we already used to show that the

spin-2 two-point function (2.19) was transverse and traceless. Indeed, as the reader may have

noticed, that two-point function had precisely the structure of the traceless projector in d dimen-

sions, eq. (3.6).

In this paper, we will be primarily dealing with tensors which are made from metrics

and from components of Md+2 vectors, such as in eq. (2.19). For such tensors, the canonical

rule to get the encoding polynomial F̃ (P ;Z) in eq. (3.20) is to simply drop all terms in

F (P ;Z) which are proportional to Z2 and Z ·P . This rule is also very convenient because

it preserves the transversality condition, and even makes it stronger, in a sense that we

now discuss.

In general, a transverse tensor FA1...Al may contain terms which are pure gauge, and

the condition P ·F = 0 is only valid modulo P 2 terms, vanishing on the cone. We will call

a tensor identically transverse if this condition happens to be satisfied identically, without

using P 2 = 0. For example, the tensor W̃ from eq. (2.16) is identically transverse with

respect to PA1 and PB2 , while W from eq. (2.20) is not. Notice that W̃ can be obtained

from W by dropping the pure gauge term. This is in fact a partial case of the following

more general rule:

Take any tensor FA1...Al(P ) which is

1. Transverse modulo P 2 terms.

2. Made out of metrics and components of P , as well as of components of one or more

vectors Q 6= P .

Drop any terms in the tensor which are proportional to P 2, ηAiAj , or PAi . The resulting

tensor F̃A1...Al(P ) will be identically transverse.

To prove this, let us write F = F̃ + F̂ , where F̂ contains all terms which are to be dropped.

Then P · F̃ will contain terms proportional to QAi
, with coefficients which are scalar functions

of (P · Q) and (Q · Q′) (if there are several Q’s). On the other hand, P · F̂ will contain terms

proportional to PAi
and/or P 2. There cannot be cancellation between these two groups of terms,

and if P · F is to vanish on P 2 = 0, P · F̃ must vanish identically.

Going back to the encoding polynomials, the transversality condition takes the form

P · ∂
∂Z

F (P ;Z) = 0 , (3.26)

or equivalently

F (P ;Z + αP ) = F (P ;Z) (∀α) . (3.27)

These conditions are satisfied modulo P 2 in general, and identically if the tensor is iden-

tically transverse. Translating the above discussion, the identically transverse polynomial

F̃ (P ;Z) is obtained from F (P ;Z) by dropping all terms proportional to Z2 and Z · P .

This is precisely the ‘canonical rule’ introduced above.
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The above discussion will prove very useful below, because the identically transverse

polynomials are easy to characterize. It is not difficult to convince oneself that the following

rule is true: a polynomial F̃ (P ;Z) is identically transverse if and only if the variable ZA
appears in it only via the tensor:

CAB ≡ ZAPB − ZBPA . (3.28)

To conclude this section, let us show how to compute tensor contractions using the em-

bedding space. The problem is formulated as follows. We want to contract two symmetric

traceless tensors fa1...al(x) and ga1...al(x). It is assumed that these tensors are projections

of the embedding space STT tensors FA1...Al(P ) and GA1...Al(P ). The latter tensors will

typically not be given in components, but in terms of their encoding polynomials F̃ (P ;Z)

and G̃(P ;Z) (in the sense of eq. (3.20)). Finally, we will assume that these polynomials

are transverse in the sense of eq. (3.27).13 We then have the formula (cf. eq. (3.9)):

fa1...al(x)ga1...al(x) =
1

l!(h− 1)l
F̃ (Px;D)G̃(Px;Z) , (3.29)

where

DA =

(
h− 1 + Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z
(3.30)

is the same differential operator as Da made to act in the (d + 2)-dimensional space. We

stress that h = d/2 here as in eq. (3.7).

Let us give a quick proof. Using the notation of section 3.1, we have

fa1...al
ga1...al = f̃a1...al

πa1...al,b1...bl g̃b1...bl = F̃A1...Al
QA1...Al,B1...BlG̃B1...Bl

, (3.31)

where f̃ and g̃ are the projections of F̃ and G̃ to the physical space, and Q is given by

QA1...Al,B1...Bl = πa1...al,b1...bl
∂PA1

∂xa1
· · · ∂P

Al

∂xal

∂PB1

∂xb1
· · · ∂P

Bl

∂xbl
. (3.32)

Remember that the projector π is made out of d-dimensional metric tensors. This equation then

means that the projector Q can be obtained from π by replacing each metric δab by the effective

metric KAB defined in eq. (2.6) (unlike in the definition of Π above, here the replacement rule is the

same whether the indices are of a or b type). For transverse tensors F̃ or G̃ we can replace KAB by

ηAB because the extra terms vanish identically. A moment’s thought shows that this reduces (3.29)

to (3.10).

3.3 Example

Let us now demonstrate the above formal discussion on a concrete example: the spin 2

embedding space two-point function (2.19). Since it’s a double tensor, we assign to it a

polynomial of two vectors Z1 and Z2, which defines the embedding correlation function

〈F (P1;Z1)F (P2;Z2)〉 = G(P1, P2;Z1, Z2) = ZA1
1 ZA2

1 ZB1
2 ZB2

2 GA1A2,B1B2(P1, P2) . (3.33)

13Although not essential here, in applications they will often be even identically transverse.
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We then have the following basic contractions:

ZA1 Z
B
2 W̃AB = (Z1 · Z2)− (Z1 · P2)(Z2 · P1)

P1 · P2
, (3.34)

ZA1 Z
A′
1 WAA′ = O(Z2

1 , Z1 · P1) , ZB2 Z
B′
2 WBB′ = O(Z2

2 , Z2 · P2) . (3.35)

It follows that

G̃(P1, P2;Z1, Z2) = const

(
(Z1 · Z2)(P1 · P2)− (P1 · Z2)(P2 · Z1)

)2
(P12)∆+2

, (3.36)

where we applied the canonical rule of dropping the O(Z2
i , Zi · Pi) terms to get the encod-

ing polynomial. Notice that G̃ is identically transverse, as it should be according to the

discussion in section 3.2. This is already a pretty compact expression; the advantage of

not having to deal with indices is starting to show.

What about the two-point function in physical space? We will write it as a polynomial

contracted with z1 and z2. This polynomial is obtained by making the substitutions Pi →
Pxi , Zi → Zzi,xi in G̃. Evaluating the scalar products

Z1 · Z2 → z1 · z2 , P1 · P2 → −
1

2
x2

12 , (3.37)

P1 · Z2 → z2 · x12 , P2 · Z1 → −z1 · x12 , (3.38)

we find

g(x1, x2; z1, z2) = const

(
(z1 · x12)(z2 · x12)− 1

2x
2
12(z1 · z2)

)2
(x2

12)∆+2
, (3.39)

up to O(z2
i ) terms (see eq. (3.21)). In the index-free approach that we are advocating

here, this expression is the final answer. The indexed version can be extracted if necessary

by acting with Da operators on the encoding polynomial, or in a more pedestrian way, by

expanding in zai and acting on the coefficient tensor with the projector π. But in this paper

we will not do this.

4 Correlation functions of spin l primaries

Unitary irreducible representations of the conformal group SO(d + 1, 1) are labeled by a

conformal dimension ∆ and an irreducible representation of SO(d). In this paper, we focus

on totally symmetric traceless tensors of SO(d). These are the spin l primaries, which

we will label by χ ≡ [l,∆]. In this section, we discuss constraints imposed by conformal

symmetry on the coordinate dependence of their correlators. The additional constraints

appearing for conserved tensors will be discussed in the next section.

4.1 Two-point functions

Consider the two-point function of a spin l primary in the embedding space:

GA1...Al,B1...Bl(P1, P2) . (4.1)
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Following the technique from the previous section, we will encode it by a function

Gχ(P1, P2;Z1, Z2) = ZA1
1 · · ·Z

Al
1 ZB1

2 · · ·Z
B2
2 GA1...Al,B1...Bl(P1, P2) . (4.2)

We have the following three conditions:

Gχ(λ1P1, λ2P2;Z1, Z2) = (λ1λ2)−∆Gχ(P1, P2;Z1, Z2) , (4.3)

Gχ(P1, P2;β1Z1, β2Z2) = (β1β2)lGχ(P1, P2;Z1, Z2) , (4.4)

Gχ(P1, P2;Z1 + α1P1, Z2 + α2P2) = Gχ(P1, P2;Z1, Z2) . (4.5)

The first condition follows from the fact that the embedding space fields are homogeneous

of degree −∆. The second one is a fancy way of saying that Gχ is a degree l polynomial in

Z1 and Z2. The final condition encodes the transversality of the embedding space tensors;

it must be satisfied modulo O(P 2) terms.

As discussed in section 3.2, we may drop all the terms in Gχ proportional to Z2
i and

Zi · Pi. The resulting function G̃χ will be identically transverse, in the sense that it will

satisfy eq. (4.5) identically, and not just modulo O(P 2). The general recipe for constructing

such functions says that they must be built out of the CAB-type tensors from eq. (3.28):

CiAB = ZiAPiB − ZiBPiA (i = 1, 2) . (4.6)

Now contracting Ci with itself gives terms of the kind that we dropped, and so the only

possibility is to start contracting the indices of C1 and C2. Full contraction gives the

building block

H12 ≡ −C1 · C2 = −2
[
(Z1 · Z2)(P1 · P2)− (P1 · Z2)(P2 · Z1)

]
, (4.7)

of weight one in both Z1 and Z2. More generally, one could try taking the trace of a string

of several alternating C1’s and C2’s. However, one can check that

(C1C2C1)AB = −1

2
(C1 · C2)C1AB . (4.8)

For this reason, such iterated contractions reduce to powers of C1 · C2. We conclude that

the most general solution is a function of C1 ·C2. The spin of the operators fixes the weight

in the Z’s, so we obtain that (cf. eq. (3.36))

G̃χ(P1, P2;Z1, Z2) = const
H l

12

(P12)∆+l
. (4.9)

Thus we recover the well-known unique two-point function of spin l primaries [24].

4.2 Three-point functions

The scalar three-point function was already given in eq. (2.8). In this section we will discuss

the arbitrary spin case using the embedding formalism. It is well known that such three-

point functions can be written as a linear combination of a finite number of conformally

invariant building blocks [36–40]. Here, we present the explicit form of these building

blocks in the embedding formalism.
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4.2.1 Scalar-scalar-spin l

Let us start with the scalar-scalar-spin l case. The scalar operators of dimensions ∆1 and

∆2 are placed at points P1 and P2. The third operator, a symmetric traceless tensor of

spin l and dimension ∆3, is placed at P3. In this case, the correlator is completely fixed

by conformal invariance. We have (l3 = l)

G̃χ1,χ2,χ3(P1, P2, P3;Z3)=const

(
(Z3 · P1)(P2 · P3)− (Z3 · P2)(P1 · P3)

)l
(P12)

∆1+∆2−∆3+l
2 (P23)

∆2+∆3−∆1+l
2 (P31)

∆3+∆1−∆2+l
2

. (4.10)

Here we are using the same notation as in the two-point function case. The polynomial

G̃χ1,χ2,χ3 is obtained from the correlator polynomial Gχ1,χ2,χ3 by dropping all terms pro-

portional to Z2
3 and Z3 ·P3. This polynomial must be identically transverse, and so it must

be constructed out of the tensor C3AB. The only possibility is to contract this tensor with

P1 and P2, which gives the structure

V3,12 ≡
P1 · C3 · P2

P1 · P2
=

(Z3 · P1)(P2 · P3)− (Z3 · P2)(P1 · P3)

P1 · P2
(4.11)

used in (4.10). The exponents are then fixed by the homogeneity requirements.

4.2.2 General spins l1, l2 and l3

We now proceed to the general case of the three-point function of symmetric traceless

operators of spins li. We will write it as

G̃χ1,χ2,χ3({Pi;Zi}) =
Qχ1,χ2,χ3({Pi;Zi})

(P12)
τ1+τ2−τ3

2 (P23)
τ2+τ3−τ1

2 (P31)
τ3+τ1−τ2

2

, (4.12)

where τi = ∆i + li. The numerator Qχ1,χ2,χ3({Pi;Zi}) is an identically transverse poly-

nomial of degree li in each Zi, with coefficients which depend on Pi. With the above

normalization, Q is also homogeneous of degree li in each Pi. Thus,

Qχ1,χ2,χ3({λiPi;αiZi + βiPi}) = Qχ1,χ2,χ3({Pi;Zi})
∏
i

(λiαi)
li . (4.13)

According to the general characterization of transverse polynomials, Q must be built by

contracting the tensors CiAB among themselves and with vectors Pi. Not all contractions

are useful, since Ci ·Ci, Ci · Pi, Ci · Zi give terms proportional to Z2
i and Zi · Pi which are

to be dropped.

Examples of nontrivial building blocks are given by contractions using different points,

for instance C1 · C2 in (4.7) and P1 · C3 · P2 in (4.11). It is then clear that three-point

functions can be constructed from the basic building blocks

Vi,jk ≡
Pj · Ci · Pk
Pj · Pk

=
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)

(Pj · Pk)
, (4.14)

Hij ≡ −Ci · Cj = −2
[
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

]
, (4.15)
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which are transverse. They also satisfy the scaling conditions (4.13) with li = 1, lj = lk = 0

for Vi,jk; li = lj = 1, lk = 0 for Hij .

However, not all Vi,jk and Hij are linearly independent due to Vi,jk = −Vi,kj and

Hij = Hji. Hence there are three linearly independent V ’s and three linearly independent

H’s. Explicitly we will use the following basic structures

V1 ≡ V1,23 , V2 ≡ V2,31 , V3 ≡ V3,12 , H12 , H13 , H23 . (4.16)

In principle, one could imagine more complicated contractions involving several Ci’s.

However, it turns out that they will not produce any new structure. Namely, any identically

transverse polynomial Q can be written as a function of Vi and Hij only (with P -dependent

coefficients). For the simplest examples, like Tr[C1C2C3], this can be checked by an explicit

computation. A general proof can be given as follows:

First, take the special case when Q is identically transverse and depends only on Zi ·Pj but not

on Zi ·Zj . It is easy to convince oneself that such a Q must be a function of Vi. In the general case, let

us first rewrite Q by expressing all Zi·Zj products via Hij from eq. (4.15). This of course generates

new terms, which are however all proportional to Zi ·Pj . This shows that Q can be expressed as

a polynomial in Hij with coefficients which are functions of Zi ·Pj . Moreover, from the way we

arrived at this representation, it’s clear that it is unique. In this representation, the transversality

of Q implies the transversality of all the coefficients (since Hij ’s are transverse by themselves).

According to the special case treated first, these coefficients can be written as functions of Vi.

The conclusion of the above discussion is that the general solution for Qχ1,χ2,χ3 can be

written as a linear combination of ∏
i

V mi
i

∏
i<j

H
nij
ij , (4.17)

as represented schematically in figure 2. Since Q must have degree li in each Zi, the

exponents must satisfy the three constraints

mi +
∑
j 6=i

nij = li . (4.18)

These equations imply as well that Q has degree li in each Pi, as it should. Notice that

with three Pi’s at our disposal, we cannot construct any nontrivial functions of Pi of zero

homogeneity (with four Pi’s this would be possible; see the four-point function case below).

This means that there is no further ambiguity in the coordinate dependence of Q.

Eq. (4.17) implies that for general spins li there will be several inequivalent three-point

function structures compatible with the conformal symmetry. Their number is equal to the

number of non-negative integer points (n12, n13, n23) in the three dimensional polyhedron

defined by the conditions

n12 + n13 ≤ l1 , n12 + n23 ≤ l2 , n13 + n23 ≤ l3 . (4.19)

Counting these points, it is possible to write the number of inequivalent structures in closed

form:

N(l1, l2, l3) =
(l1 + 1)(l1 + 2)(3l2 − l1 + 3)

6
− p(p+ 2)(2p+ 5)

24
− 1− (−1)p

16
, (4.20)

where we have ordered the spins l1 ≤ l2 ≤ l3 and defined p ≡ max(0, l1 + l2 − l3).
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3l=

5l=

7l=

Figure 2. Schematic representation of one of the tensor structures appearing in the (spin 5)-(spin

3)-(spin 7) three-point function. Vi’s are represented as disconnected dots at the vertices and Hij ’s

as lines joining the vertices.

4.2.3 Parity odd three-point functions

So far we have implicitly assumed that the correlators are parity invariant. If this is not the

case, then there are additional structures in the three-point function. More precisely, we can

use the SO(d+ 1, 1)-invariant ε-tensor to construct new building blocks for the three-point

function. Since the product of two ε-tensors can be written in terms of metrics, it is enough

to use the ε-tensor once. The number of invariant structures that can be built from one ε-

tensor and the vectors Pi and Zi depends on the dimension d. For d > 4 it is not possible to

form a scalar from these ingredients. This implies that all conformally invariant three-point

functions of spin li symmetric traceless operators in d > 4 are necessarily parity invariant.14

For d = 4, there is a unique invariant

ε(Z1, Z2, Z3, P1, P2, P3) , (4.21)

where by ε(· · · ) we mean the contraction of the (d + 2)-dimensional ε-tensor with all the

arguments. Thus, the number of parity odd structures of (l1, l2, l3) three point functions is

equal to the number of parity even structures of (l1−1, l2−1, l3−1) three point functions,

since (4.21) involves a single power in each Zi.

For d = 3, there are 3 invariants

ε(Zi, Zj , P1, P2, P3) . (4.22)

Notice that ε(Z1, Z2, Z3, P1, P2) is not invariant under Z3 → Z3 + βP3 and therefore is

excluded. In fact, in 3 dimensions not all conformally invariant building blocks are inde-

pendent. We treat this special case separately in section 4.2.5.

14Sometimes the correlators containing ε-tensors are called parity violating in the literature, which is poor

terminology. The theory may be perfectly parity preserving even though some correlators are parity odd,

provided that the fields themselves are assigned negative parity. A notable exception is the stress tensor,

which must be assigned positive parity by its very meaning as the generator of spacetime transformations,

and also more formally since the correlator 〈TTT 〉 necessarily contains a parity even term (due to the Ward

identity) [38]. In this case, any admixture of a parity odd structure [39, 40] would imply parity violation.
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4.2.4 Relation to leading OPE coefficient

Mack [36] and Osborn and Petkou [38] give a prescription to uplift the leading OPE co-

efficient into a conformally invariant three point function. Here we wish to make direct

contact with this work, starting from the embedding formalism.

Let us rewrite eq. (2.31) of [38] as follows:

φ1(x; z1)φ2(0; z2) ∼ φ3(0; ∂z3) t(x; z1, z2, z3)x−(∆1+∆2−∆3+
∑
li), (4.23)

where xα stands for (x2)
α
2 , and

φ(x; z) = zµ1 · · · zµlφµ1...µl(x) . (4.24)

The choice of a rotationally invariant tensor structure for the leading OPE coefficient is

the choice of rotationally invariant polynomial t such that

t(λx, λ1z1, λ2z2, λ3z3) = t(x; z1, z2, z3)

3∏
i=1

(λλi)
li . (4.25)

Equation (2.36) of [38] then becomes

〈φ1(x1; z1)φ2(x2; z2)φ3(x3; z3)〉 =
t (X12; z̃1, z̃2, z3)

x2∆1
13 x2∆2

23 X
∆1+∆2−∆3+

∑
li

12

, (4.26)

where

X12 =
x13

x2
13

− x23

x2
23

, z̃1 = R(x13)z1 , z̃2 = R(x23)z2 , (4.27)

where R(x) is a linear transformation acting on zi as

R(x)µν = δµν −
2xµxν
x2

. (4.28)

Using X2
12 = x2

12/(x
2
13x

2
23) and the scaling properties of t we can write

〈φ1(x1; z1)φ2(x2; z2)φ3(x3; z3)〉 =
t (x̃12; z̃1, z̃2, z3)

x
∆1+∆3−∆2+

∑
li

13 x
∆2+∆3−∆1+

∑
li

23 x
∆1+∆2−∆3+

∑
li

12

,

(4.29)

where

x̃12 = x2
13x

2
23X12 = x13 x

2
23 − x23 x

2
13 . (4.30)

This expression treats the operator φ3 differently from the other two operators. How-

ever, if needed, one can easily rewrite it, so that the role of φ3 is taken by, say, φ1. To do

this, one needs to re-express the numerator as

t (x̃12;R(x13)z1, R(x23)z2, z3) = t′ (x̃23; z1, R(x12)z2, R(x13)z3) , (4.31)

where t′ is some other polynomial. To find t′, notice first of all that the transformation

R(x) is orthogonal.15 Since t is a rotationally invariant polynomial it will not change if

every argument is multiplied by R(x13). Using the relations

R(x13)R(x23) = R(x̃23)R(x12), R(x13)x̃12 = x̃23 , (4.32)

15It’s actually a very trivial orthogonal transformation; it just flips the sign of the component in the

direction of x.
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we see that this transformation accomplishes the needed rewriting, and that

t′(x; z1, z2, z3) = t(x; z1, R(x)z2, z3) . (4.33)

Now, it is clear that if φ1 = φ2, then the polynomial t obeys

t(x; z1, z2, z3) = t(−x; z2, z1, z3) . (4.34)

On the other hand, if φ2 = φ3 it is the t′ which satisfies the simple condition, while for t

the condition is less transparent:

t (x; z1, z2, z3) = t (−x; z1, R(x)z3, R(x)z2) . (4.35)

We now wish to compare with eq. (4.12). In order to do that, we should project the

embedding correlator onto the Poincaré section, using

Pi = (1, x2
i , xi) , Zi = (0, 2xi · zi, zi) . (4.36)

One can then check that

P23V1 = −z̃1 · x̃12 , P13V2 = −z̃2 · x̃12 , P12V3 = z3 · x̃12 ,

P12P23H13 = (z̃1 · z3)x̃2
12 , P12P13H23 = (z̃2 · z3)x̃2

12 , (4.37)

P13P23H12 = (z̃1 · z̃2)x̃2
12 − 2(z̃1 · x̃12)(z̃2 · x̃12) .

Therefore, the structure (4.17) corresponds to t(x; z1, z2, z3) given by

(x2z1 ·z3)n13(x2z2 ·z3)n23(x2z1 ·z2−2x ·z1 x ·z2)n12 (−x ·z1)m1(−x ·z2)m2(x ·z3)m3 , (4.38)

modulo terms O(z2
i ) which are not independent but fixed by tracelessness of φ’s. It is also

clear that this is a basis for the most general rotational and parity invariant polynomial

t(x; z1, z2, z3).

Parity odd structures are dimension specific. In order to form a scalar from the d-

dimensional ε-tensor we need at least d linearly independent vectors. Therefore, for d > 4

the polynomial t(x; z1, z2, z3) is necessarily parity invariant, as stated in the previous sec-

tion. In four dimensions, we can make parity odd three-point functions using ε(x, z1, z2, z3).

This corresponds to the use of (4.21) in the embedding language. To see that, we just need

to project onto the Poincaré section,

ε(Z1, Z2, Z3, P1, P2, P3) =

∣∣∣∣∣∣∣
0 0 0 1 1 1

2z1 · x1 2z2 · x2 2z3 · x3 x
2
1 x

2
2 x

2
3

z1 z2 z3 x1 x2 x3

∣∣∣∣∣∣∣ . (4.39)

Using translation invariance we can write

ε(Z1, Z2, Z3, P1, P2, P3) =

∣∣∣∣∣∣∣
0 0 0 1 1 1

2z1 · x13 2z2 · x23 0 x2
13 x

2
23 0

z1 z2 z3 x13 x23 0

∣∣∣∣∣∣∣ , (4.40)

and expanding in the last column, we find

ε(Z1, Z2, Z3, P1, P2, P3) = ε(x̃12, z̃1, z̃2, z3) . (4.41)

The problem in three dimensions is special so we treat it separately in the next sub-

section.
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4.2.5 Three dimensions

The problem of constructing conformally invariant three-point functions in three dimen-

sional CFTs has been recently addressed in [40]. In this subsection we shall explain how

their results fit into the formalism of this paper.

Using the group theoretic approach of [36] it is easy to count how many independent

structures exist for a three-point function of operators with spin l1 ≤ l2 ≤ l3. We just

need to count how many irreducible representations of SO(3) appear in the tensor product

l1 ⊗ l2 ⊗ l3 (notice that all irreducible representations of SO(3) are totally symmetric and

traceless representations). This gives

N3d(l1, l2, l3) =

l3+l2∑
l=l3−l2

l+l1∑
m=|l−l1|

1 = (2l1 + 1)(2l2 + 1)− p(1 + p) , (4.42)

where p = max(0, l1 + l2 − l3). Of these, there are

N+
3d(l1, l2, l3) = 2l1l2 + l1 + l2 + 1− p(p+ 1)

2
(4.43)

parity even structures and

N−3d(l1, l2, l3) = 2l1l2 + l1 + l2 −
p(p+ 1)

2
(4.44)

parity odd structures. The split between parity even and parity odd structures follows

from the fact that in the product of two SO(3) tensors with spin l1 and l2, the tensors with

spin l1 + l2, l1 + l2−2, . . . , |l1− l2| are parity even, and the tensors with spin l1 + l2−1, l1 +

l2 − 3, . . . , |l1 − l2|+ 1 are parity odd because they contain one ε-tensor.

The number of parity even structures N+
3d is smaller than the general result (4.20).

To explain this mismatch we need to notice that, in three dimensions, there are identities

relating some of the general tensor structures. The easiest way to derive these relations is

to consider the expression for the leading OPE coefficient t(x; z1, z2, z3). As in section 3,

we can restrict the polynomial to z2
i = 0, which translates to an O(Z2

i , Zi · Pi) term in the

embedding space.

In three dimensions, the four arguments of t cannot be linearly independent vectors:

x =

3∑
i=1

αi zi . (4.45)

For z2
i = 0, the coefficients αi can be given explicitly as

αi =
(zj · x)(zk · zi) + (zk · x)(zj · zi)− (zi · x)(zj · zk)

2(zi · zj)(zi · zk)
(j 6= k 6= i) . (4.46)

Another way to express the linear dependence is as

det
1≤i,j≤4

(zi · zj)
∣∣∣∣
z4=x

= 0 . (4.47)

– 20 –



J
H
E
P
1
1
(
2
0
1
1
)
0
7
1

Using the rules in eq. (4.37), this last identity corresponds to the relation

(V1H23 + V2H13 + V3H12 + 2V1V2V3)2 ≈ −2H12H13H23 (4.48)

between the conformally invariant structures. Here ≈ means modulo O(Z2
i , Zi · Pi). This

identity is (the square of) the identity (2.14) of [40]. The identity (4.48) can also be obtained

directly from the (3 + 2)-dimensional embedding space by noting that the 6 vectors Zi and

Pi can not be linearly independent. Equation (4.48) then follows from det1≤i,j≤6(Zi·Zj) = 0

where Zi+3 → Pi for i = 1, 2, 3. The existence of this identity means that one does not

need to use the substructure H12H13H23 to write the most general three-point function. It

is then simple to correct the overcounting of the general analysis for parity even structures,

by subtracting all structures containing the factor H12H13H23. This gives

N+
3d(l1, l2, l3) = N(l1, l2, l3)−N(l1 − 2, l2 − 2, l3 − 2) , (4.49)

which agrees with the counting (4.43) from group theory.

We can also find relations between the parity odd structures by expanding the following

determinant along the first line, ∣∣∣∣∣A1 A2 A3
∑
αiAi

z1 z2 z3 x

∣∣∣∣∣ = 0 , (4.50)

where we recall that zi and x are three dimensional vectors here represented as columns.

The simplest identity follows from choosing Ai = x · zi:

(x · z1) ε(z2, z3, x) + (x · z2) ε(z3, z1, x) + (x · z3) ε(z1, z2, x)− x2 ε(z1, z2, z3) = 0 . (4.51)

This tells us that we never need to use the substructure ε(z1, z2, z3), since it can be obtained

as a linear combination of ε(zi, zj , x). Furthermore, choosing

A1 = −(x·z1)2 , A2 = x2 (z1 ·z2)−(x·z1)(x·z2) , A3 = x2 (z1 ·z3)−(x·z1)(x·z3) , (4.52)

we obtain

A1 ε(z2, z3, x)−A2 ε(z1, z3, x) +A3 ε(z1, z2, x) = 0 , (4.53)

where we have used that
∑
αiAi = 0 (as one can check from eq. (4.47)). This identity

is invariant under the permutation z2 ↔ z3, but one can generate two more identities by

permuting z1 ↔ z2 and z1 ↔ z3. In terms of our conformally invariant structures, these

identities read

0 ≈ V 2
1 ε23 + (H12 + V1V2) ε13 − (H13 + V1V3) ε12 ,

0 ≈ V 2
2 ε13 + (H23 + V2V3) ε12 + (H12 + V1V2) ε23 ,

0 ≈ V 2
3 ε12 − (H13 + V1V3) ε23 + (H23 + V2V3) ε13 , (4.54)

where

εij ≡ Pij ε(Zi, Zj , P1, P2, P3) . (4.55)
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This follows from the projections to the Poincaré section (4.37) and

ε12 = −x2
12 ε(z̃1, z̃2, x̃12) , ε13 = −x2

13 ε(z̃1, z3, x̃12) , ε23 = −x2
23 ε(z̃2, z3, x̃12) . (4.56)

The identities (4.54) are equivalent to the eqs. (2.19) given in [40]. The identity (4.48)

follows from the compatibility of these three equations. The easiest way to count all parity

odd three-point functions is to take these three identities as the only independent relations

between the building blocks. Then we have

N−3d(l1, l2, l3) = N(l1 − 1, l2 − 1, l3) +N(l1 − 1, l2, l3 − 1) +N(l1, l2 − 1, l3 − 1)

−N(l1 − 2, l2 − 1, l3 − 1)−N(l1 − 1, l2 − 2, l3 − 1)

−N(l1 − 1, l2 − 1, l3 − 2), (4.57)

where the first line corresponds to all parity even structures times ε12, ε13 and ε23, respec-

tively. The second and third lines corresponds to the subtraction of the identities (4.54),

multiplied by parity even structures to avoid overcounting. This expression agrees with

the explicit formula given in eq. (4.44).

4.3 Four-point functions

Now let us move on to discuss the possible structures that can appear in CFT four-point

functions. The simplest case is when all four operators are scalar primaries. A correlation

function 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 containing primaries of dimension ∆i can be obtained

from the projection of the embedding correlator

〈Φ1(P1)Φ2(P2)Φ3(P3)Φ4(P4)〉=
(
P24

P14

)∆1−∆2
2
(
P14

P13

)∆3−∆4
2 f(u, v)

(P12)
∆1+∆2

2 (P34)
∆3+∆4

2

, (4.58)

where u and v are the conformally invariant cross-ratios

u =
P12P34

P13P24
, v =

P14P23

P13P24
. (4.59)

Thus, in this very simple case, the correlation function depends on a single function of the

cross ratios.

The generalization to operators with spin is clear and follows the same logic explained

in section 4.2. In this case, however, the correlation function will be a linear combination

of tensor structures that are polynomial in the Z’s, with coefficients given by undetermined

functions of the cross ratios. Thus, for a generic four-point function we write

G̃χ1,χ2,χ3,χ4 =

(
P24
P14

) τ1−τ2
2
(
P14
P13

) τ3−τ4
2

(P12)
τ1+τ2

2 (P34)
τ3+τ4

2

∑
k

fk(u, v)Q(k)
χ1,χ2,χ3,χ4

({Pi;Zi}) , (4.60)

where τi = ∆i + li. With this choice of pre-factor, the Q(k) have weight li in each point Pi.

Conformal invariance is equivalent to the following condition for each linearly independent

Q(k) polynomial:

Q(k)
χ1,χ2,χ3,χ4

({λiPi;αiZi + βiPi}) = Q(k)
χ1,χ2,χ3,χ4

({Pi;Zi})
∏
i

(λiαi)
li . (4.61)
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Similar to the three-point function case, these polynomials are constructed from the basic

building blocks Vi,jk and Hij introduced in section 4.2. However, not all Vi,jk are linearly

independent. In addition to Vi,jk = −Vi,kj we have, in the case of four points,

(P2 · P3)(P1 · P4)V1,23 + (P2 · P4)(P1 · P3)V1,42 + (P3 · P4)(P1 · P2)V1,34 = 0 . (4.62)

This shows that there are only 2 independent Vi,jk for each i. A convenient choice for

the example given below is to use linear combinations that are even and odd under the

interchange 3↔ 4,

W1 ≡ V1,23 + V1,24 , W̄1 ≡ V1,23 − V1,24 , (4.63)

W2 ≡ V2,13 + V2,14 , W̄2 ≡ V2,13 − V2,14 . (4.64)

Similarly, we may define W3,W4 and W̄3, W̄4 to be, respectively, even and odd under the

interchange 1↔ 2. Then, all solutions Q(k) of (4.61) have the form∏
i

Wmi
i

∏
i

W̄ m̄i
i

∏
i<j

H
nij
ij , (4.65)

such that

mi + m̄i +
∑
j 6=i

nij = li . (4.66)

The problem of finding the number of structures for the four-point function is given by

counting the 6-tuples (n12, n13, n14, n23, n24, n34) of non-negative integers such that

n12 + n13 + n14 = a1 ≤ l1 ,
n12 + n23 + n24 = a2 ≤ l2 ,
n13 + n23 + n34 = a3 ≤ l3 ,
n14 + n24 + n34 = a4 ≤ l4 . (4.67)

Then, for each of these 6-tuples with a given set {ai}, there are

4∏
i=1

(li − ai + 1) , (4.68)

possible ways of distributing the Wi and W̄i structures (counting number of integers mi and

m̄i such that mi + m̄i = li − ai). We will not attempt here to count the number of general

structures allowed for a generic four-point function. The whole point of this analysis was

to make it clear how to construct such structures in any given particular case that one may

wish to consider.

4.3.1 Example: vector-vector-scalar-scalar

As an example of the previous general formalism let us consider the case of a four-point

function between two vectors and two scalars 〈va(x1)vb(x2)φ(x3)φ(x4)〉, even under the
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exchange of both vectors and of both scalars. To start there are five possible independent

structures, namely

W1W2 , W̄1W̄2 , W1W̄2, W̄1W2, H12 . (4.69)

Noticing that under P1 ↔ P2 or P3 ↔ P4 the cross ratios transform as u↔ w ≡ u/v, it is

clear that in this case the linear combination of the Q(k) entering (4.60) is given by

f1(u,w)W1W2 + f2(u,w)W̄1W̄2 + f3(u,w)H12 + f4(u,w)
(
W1W̄2 − W̄1W2

)
, (4.70)

with

f4(u,w) = −f4(w, u) , fk(u,w) = fk(w, u) , k = 1, 2, 3 . (4.71)

Hence we recover the counting already presented in [25].

4.4 n-point functions

We will finish this section with some general remarks on the case of n-point functions, for

which there are n(n− 3)/2 independent conformally invariant cross-ratios ua (actually, for

n high enough they are not all independent, but this fact will not be important here).

A generic n-point function can be written as

G̃χ1,...,χn =

n∏
i<j

P
−αij
ij

∑
k

fk(ua)Q
(k)
χ1,...,χn({Pi;Zi}) , (4.72)

where

αij =
τi + τj
n− 2

− 1

(n− 1)(n− 2)

n∑
k=1

τk . (4.73)

With the chosen pre-factor, the Q(k) have weight li in each point Pi. They are also identi-

cally transverse:

Q(k)
χ1,...,χn({λiPi;αiZi + βiPi}) = Q(k)

χ1,...,χn({Pi;Zi})
∏
i

(λiαi)
li . (4.74)

These polynomials can then be constructed from the basic building blocks Vi,jk and Hij

given in (4.14) and (4.15); see figure 3. For each i, since only n− 2 of the (anti-symmetric)

Vi,jk are linearly independent, we can choose to work with

Vij ≡ Vi,(i+1)j (j = 1, · · · , î, ˆi+ 1, · · · , n) , (4.75)

where hatted integers are excluded. Then, all solutions Q(k) have the form n∏
i=1

n∏
j 6=i,i+1

Vmijij

 n∏
i<j

H
nij
ij , (4.76)

such that
n∑

j 6=i,i+1

mij +

n∑
j 6=i

nij = li . (4.77)

– 24 –



J
H
E
P
1
1
(
2
0
1
1
)
0
7
1

3l=

5l=

7l=

4l=

6l=

Figure 3. Same as figure 2 but for a five-point function. The isolated dots representing V ’s appear

in several colors because for an n-point function there are several possible V ’s per vertex.

Thus, the problem of finding the number of structures of the n-point function separates

again in finding the (n(n− 1)/2)-tuples, {nij} with i < j, such that

n∑
j 6=i

nij = ai ≤ li . (4.78)

For each set of non-negative integers ai, a moment’s thought shows that there are

n∏
i=1

(li − ai + n− 3)!

(li − ai)!(n− 3)!
(4.79)

possible ways of distributing the Vij structures.

In the above counting we neglected identities following from the finite dimensionality

of spacetime. The 2n vectors Zi and Pi can not be linearly independent in the (d + 2)-

dimensional embedding space if n > d
2 + 1. In a given dimension, one can obtain identities

between the above tensor structures by expanding det(Zi · Zj) = 0, where the matrix is of

size (d+ 3)× (d+ 3) or larger and some of the Z’s can be P ’s.

5 Conserved tensors

In unitary CFTs, the dimensions of spin l primaries must satisfy the unitarity

bound [41–44]:

∆ ≥ l + d− 2 (l ≥ 1) . (5.1)

When ∆ takes the lowest value allowed by this bound for a given l, the corresponding

primary field is conserved. Physically important examples of such fields are the stress

tensor (l = 2) and global symmetry currents (l = 1).16 The conservation condition then

leads to additional constraints on the form of three and higher point functions. In this

section we will discuss these constraints and show how to impose them directly in the

embedding space.

16Note that it is not as interesting to consider scalars, since only a free field can saturate the scalar

unitarity bound ∆ ≥ (d− 2)/2.
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5.1 Conservation condition and conformal invariance

Let us begin by considering the conservation condition for a spin l dimension ∆ primary:

∂ · f = 0 , (5.2)

(∂ · f)a2...al ≡ ∂

∂xa1
fa1a2...al(x) . (5.3)

We would like to learn how to impose this condition in terms of the embedding space tensor

F which projects to f . Differentiating eq. (2.5), there will be two types of terms depending

whether the derivative falls on ∂P/∂x or on F . These terms can be simplified using

∂

∂xa

(
∂PA

∂xb

)
= δabP̄

A, (5.4)

∂PA1

∂xa1

∂FA1...Al

∂xa1
=
∂PA1

∂xa1

∂PB

∂xa1

∂FA1...Al

∂PB
≡ KA1B ∂FA1...Al

∂PB
, (5.5)

where the metric KAB and the vector P̄A were given in eq. (2.6). Commuting P with

∂/∂P and using the property that F is homogeneous of degree −∆, the end result can be

put in the form

(∂ · f)a2...al(x) =
∂PA2

∂xa2
. . .

∂PAl

∂xal
RA2...Al(Px) , (5.6)

with

RA2...Al(P ) =

[
∂

∂PA1

− 1

P · P̄
(P̄ · ∂

∂P
)PA1 − (l + d− 2−∆)

P̄A1

P · P̄

]
FA1...Al(P ) . (5.7)

Note that the 1/(P · P̄ ) prefactors are needed to ensure that all terms in R have the same

homogeneity in P .

The tensor F is originally defined on the cone P 2 = 0, while the derivatives ∂/∂P

appearing in the definition of R are unrestricted. To compute the derivatives along the

non-tangent directions, the tensor F has to be extended away from the cone. It is easy

to see that different extensions of F change R by terms which project to zero. This is a

sanity check, since the l.h.s. of the formula does not allow for any ambiguity. The same is

true about pure gauge modifications of F .

The terms in R involving P̄ may seem problematic from the point of view of SO(d+1, 1)

invariance. The last term clearly breaks it unless its coefficient vanishes. On the other hand,

the second term is SO(d + 1, 1) invariant, though not manifestly. To see this, one should

use the condition that P · F vanishes on the cone. Writing this as P · F = O(P 2), we see

that P · P̄ cancels out and P̄ drops out from the second term.

Now we see what is special about ∆ = l+d−2: precisely for this dimension R becomes

an SO(d + 1, 1) invariant tensor. This tensor is also traceless (obvious) and transverse

(straightforward to show by using the tracelessness and transversality of F ). We conclude

that its projection to the physical space, ∂ · f , will transform as a primary under the

conformal group. In particular, the transformation of ∂ · f will be homogeneous: ∂ · f(x)

is proportional to ∂ · f(x′). This is to be contrasted with the usual transformation rule for

the derivative of a primary, which contains a term proportional to the primary itself.
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One consequence of the above discussion is that for ∆ = l + d − 2, and only for this

dimension, the conservation condition ∂ · f = 0 can be imposed in a way that is consistent

with the conformal symmetry.

But one can say more. The fact that for ∆ = l + d − 2 the divergence ∂ · f is both

a primary and a descendant implies, using the argument familiar from 2D CFT, that it

is a null state. In particular, the two-point function of ∂f with itself, as with any other

primary, will vanish:

〈∂ · f(x) ∂ · f(0)〉 = 0 . (5.8)

The latter equality can be also checked using the two-point function of spin l primaries

discussed in section 4.1.

Now, in a unitary theory eq. (5.8) implies that ∂ · f = 0 as an operator equation.

Thus imposing the conservation condition for ∆ = l + d − 2 is not only consistent, but

also mandatory.

In practice, we will have to impose that three-point functions of f with any other fields

should be conserved. However, unlike for the two-point functions, this will not happen

automatically. Rather, we will find constraints beyond those discussed in section 4.2. On

the other hand, once all the three-point function constraints are satisfied, higher point

functions will be automatically conserved as a consequence of the OPE.

5.2 Conservation condition for polynomials

Since the conservation constraint must be imposed in addition to the constraints discussed

in section 4, we should write it in a form compatible with the index-free notation that

we developed there. In particular, we will work with the encoding polynomial F̃ (P ;Z)

introduced in section 3.2, which is identically transverse and agrees with F (P ;Z) modulo

O(Z2, Z · P ). Similarly, we will also encode the tensor R via the identically transverse

function R̃(P ;Z).

The result of this section will be that R̃(P ;Z) can be computed from F̃ (P ;Z) by the

following simple formula:

R̃(P ;Z) =
1

l(h+ l − 2)
(∂ ·D)F̃ (P ;Z)−O(Z2, Z · P ), (5.9)

where

∂ ·D ≡ ∂

∂PM
DM , (5.10)

and DM is the differential operator in Z defined in eq. (3.30). “−O(· · · )” means that the

corresponding terms must be dropped.

Let us prove formula (5.9). First we need to recover F from F̃ . According to the result

from section 3.2, the necessary projector can be obtained from a d-dimensional traceless symmetric

projector:

πa1...al,b1...bl = δa1b1 · · · δalbl − cl
∑
i<j

δaiaj
δbibj

∏
k 6=i,j

δakbk +O(δaiaj
δakan

) . (5.11)

Here we are not symmetrizing in b’s, assuming that π is contracted with a symmetric tensor. The

second term in the formula subtracts single traces, which fixes its coefficient cl = 1/(d + 2l − 4).
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The O(δaiaj
δakan

) stands for terms which subtract multiple traces; we will not need to know them

explicitly. Performing the replacements from eq. (3.23), we obtain the representation

FA1...Al
= F̃A1...Al

− cl
∑
i<j

WAiAj
F̃B

BA1...Âi...Âj ...Al
+O(WAiAj

WAkAn
) , (5.12)

where the hatted indices are skipped.

Now we can start computing R̃. Assuming that ∆ = l + d− 2, eq. (5.7) gives

R̃A2...Al
=

[
∂

∂PA1

− 1

P · P̄
(P̄ · ∂

∂P
)PA1

]
FA1...Al

−O(ηAiAj , PAi) , (5.13)

where −O(· · · ) again indicates the terms which will be dropped when passing from R to R̃. In fact,

it is easy to see that the O(WAiAjWAkAn) part of F only leads to such terms. Similarly, all of the

terms in F proportional to ηAiAj
with i, j 6= 1 will also be dropped.

The remaining terms are

FA1...Al
=
(
F̃A1...Al

− cl
∑
j≥2

ηA1Aj F̃
B
BA2...Âj ...Al

)
+ cl

∑
i

PAiSA1...Âi...Al
+ · · · , (5.14)

where

SA2...Al
≡ 1

P · P̄

l∑
j=2

P̄Aj
F̃B

BA2...Âj ...Al
. (5.15)

Now let us apply the differential operator. Using the fact that F̃ is transverse, the action on

the first term of eq. (5.14) gives

R̃A2...Al
=

∂

∂PA1

(
F̃A1...Al

− cl
∑
j≥2

ηA1Aj F̃
B
BA2...Âj ...Al

)
+ clSA2...Al

−O(ηAiAj , PAi) + · · · , (5.16)

where the −O(· · · ) reminds us that some of the terms generated by ∂/∂PA1
will have to be dropped.

To compute the action on the second term, we use a formula valid for any S of homogeneity

−∆S : [
∂

∂PA1

− 1

P · P̄
(P̄ · ∂

∂P
)PA1

]∑
i

PAi
SA1...Âi...Al

= (5.17)

= (d+ l − 1−∆S)SA2...Al
− 1

P · P̄
∑
i

P̄Ai
(P · S)A2...Âi...Al

+O(ηAiAj
, PAi

) . (5.18)

Specializing to the S in eq. (5.15), ∆S = d+ l−1 and the first term vanishes. Using the contraction

(P · S)A3...Al
= F̃B

BA3...Al
(5.19)

(for F̃ transverse), we see that the contribution to R̃A2...Al
is simply −clSA2...Al

, canceling the

second term in eq. (5.16). Thus we obtain the final result

R̃A2...Al
=

∂

∂PA1

(
F̃A1...Al

− cl
∑
j≥2

ηA1Aj
F̃B

BA2...Âj ...Al

)
−O(ηAiAj

, PAi
) . (5.20)

It remains to convert this equation to the polynomial notation by contracting with Z’s. Using the

definition of the operator DM , it is straightforward to show that the resulting formula is identical

to eq. (5.9).

– 28 –



J
H
E
P
1
1
(
2
0
1
1
)
0
7
1

5.3 Examples

Now we will give some simple examples of how to apply the above formalism, focusing

on three-point functions where two of the three operators are conserved currents. We will

then show how the conservation condition restricts possible structures that appear in these

three-point functions. Conservation constraints on the structure of three-point functions

have been studied previously by Osborn and Petkou [38], directly in the physical space.

Where comparison is possible, we have verified explicitly that our methods reproduce their

results. We consider only the parity even case in d ≥ 4.

Let us consider the simplest nontrivial example of a three-point function between two

vector currents at points x1 and x2 and a scalar operator at x3,

〈v1
a(x1)v2

b (x2)φ(x3)〉 . (5.21)

Here we assume that φ has dimension ∆, while v’s necessarily have dimension d− 1. The

currents do not necessarily belong to the same nonabelian current multiplet, so we can

consider both symmetry possibilities under the exchange of v’s.

First we consider the symmetric case (e.g. if the currents are identical). According to

the results of section 4.2, the embedding function encoding this three-point function has

the form

G̃(P1, P2, P3;Z1, Z2) =
αV1V2 + βH12

(P12)d−
∆
2 (P13)

∆
2 (P23)

∆
2

, (5.22)

with a priori independent constants α and β. The conservation condition can be imposed by

using eq. (5.9). Computing the divergence at P1 and dropping the terms of O(Z2
1 , Z1 ·P1),

we find the result

(∂P1 ·DZ1) G̃→
(
d

2
− 1

)
(α(d− 1−∆) + β∆)

V2

(P12)d−
∆
2 (P13)

∆
2 (P23)

∆
2

. (5.23)

For any α and β, this embedding function is identically transverse and has the correct

structure to represent a three-point function between a scalar ∂av1
a(x1), a vector v2

b (x2)

and another scalar φ(x3). This is exactly how it should be, since taking divergence is

consistent with conformal symmetry for the canonical field dimensions. Moreover, current

conservation demands that the result should actually vanish, which implies that α and β

must be related by

α(d− 1−∆) + β∆ = 0. (5.24)

This example demonstrates how the conservation condition can be simply imposed di-

rectly in the embedding space. Note that the computations in this formalism are completely

mechanical and easily lend themselves to automatization, e.g. in Mathematica.

Let us now generalize to the three-point function when the scalar is replaced by a spin

l, dimension ∆ operator:

〈v1
a(x1)v2

b (x2)φc1···cl(x3)〉, (5.25)

still symmetric in 1 ↔ 2. When l ≥ 2 is even this three-point function has an embedding

function that a priori depends on the four constants α, β, γ and η:

G̃({Pi;Zi}) =
αV1V2V

l
3 + β (H13V2 +H23V1)V l−1

3 + γH12V
l

3 + ηH13H23V
l−2

3

(P12)d−
∆+l

2 (P13)
∆+l

2 (P23)
∆+l

2

. (5.26)
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symmetric anti-symmetric

〈v1v2O(l)〉
l = 0 : 2→ 1

l ≥ 1 odd : 1→ 0

l ≥ 2 even : 4→ 2

l = 0 : 0

l = 1 conserved : 3→ 2 [45]

l = 1 non-conserved : 3→ 1

l ≥ 2 even : 1→ 0

l ≥ 3 odd : 4→ 2

〈TTO(l)〉

l = 0 : 3→ 1 [38]

l ≥ 1 odd : 4→ 0

l = 2 conserved : 8→ 3

l = 2 non-conserved : 8→ 2

l ≥ 4 even : 10→ 3

Table 1. The number of parity even structures in the three-point function of two conserved spin

j currents (j = 1, 2) with an arbitrary spin l primary in d ≥ 4. We consider symmetric and anti-

symmetric structures with respect to exchanging spin 1 currents, while only symmetric structures are

relevant for the stress tensor correlators. “n→m” means that n conformal structures compatible

with the assumed exchange symmetry are reduced to m when the conservation condition is imposed.

The particular combinations of elementary tensor structures are fixed by the requirement

that the function be even under the exchange of points P1 and P2. Computing the diver-

gence at P1 and dropping the usual terms, we find the following result

(∂P1 ·DZ1) G̃→
(
d

2
− 1

)
aV2V

l
3 + bH23V

l−1
3

(P12)d−
∆+l

2 (P13)
∆+l

2 (P23)
∆+l

2

, (5.27)

with

a = α(d− 1−∆) + β(2− 2d− l + ∆) + γ(l + ∆) , (5.28)

b = β(d− 2−∆) + γl + η(4− 2d− l + ∆) . (5.29)

Current conservation then forces a = b = 0, reducing the number of independent tensor

structures in this three-point function from four to two.

For odd l ≥ 1 there is a single tensor structure invariant under the exchange of points

P1 and P2, given by

V ({Pi;Zi}) =
α (H13V2 −H23V1)V l−1

3

(P12)d−
∆+l

2 (P13)
∆+l

2 (P23)
∆+l

2

. (5.30)

However, imposing conservation as above, we find α = 0. This means that an odd l field

cannot appear in the OPE of two identical conserved currents.

The three-point functions anti-symmetric under current exchanges are straightforward

to consider by the same method. One can also consider (spin 2)-(spin 2)-(spin l) three-point

function, imposing stress tensor conservation (appendix A). The results are summarized

in table 1.
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We would like to comment about the case when the spin l operator is also conserved.

One could näıvely expect that imposing spin l conservation would lead to a further

reduction of structures, but that’s not what happens. For l unequal to the spin j of the

other two conserved currents, spin l conservation turns out to be satisfied automatically as

a consequence of the spin j conservation and setting the spin l dimension to the canonical

value ∆ = l + d − 2. Furthermore, for l = j we actually get one more structure by going

to the canonical spin l dimension, as the table shows. What happens is that for this

dimension some of the constraints for the coefficients of elementary structures become

linearly dependent.

6 S-matrix rule for counting structures

In the previous sections we have rigorously derived a number of results related to counting

CFT three-point function structures, with or without conservation constraints. We will

now present a rule which allows us to intuitively explain all of the found results. The

first appearance of this rule was the observation by Hofman and Maldacena [46] that the

number of conformally invariant structures in the stress tensor three-point function in

d ≥ 4, computed to be 3 by Osborn and Petkou [38], coincides with the number of on-shell

three-graviton vertices in Md+1, computed to be 3 by Metsaev and Tseytlin [47].

We propose the following generalization of this rule, which covers both the conserved

and non-conserved case: The number of independent structures in a three-point function

containing operators of spins {l1, l2, l3} is equal to the number of independent on-shell scat-

tering amplitudes for particles of spins {l1, l2, l3} in d+ 1 flat Minkowski dimensions. The

particles should be taken massless or massive depending on whether or not the corresponding

operator is conserved.

To demonstrate how this works, let us first consider the case of a scattering amplitude

between 3 massive particles of arbitrary spin. It is a Lorentz invariant function of the

momentum pi and polarization tensor ζi of each particle. Since the spin li polarization

tensors ζi are symmetric and traceless, we can trade them for a polynomial of degree li in

the null vector zi. Moreover, the transversality condition (pi)µ1ζ
µ1...µl1
i = 0 translates to

zi · pi = 0.17 Therefore, we must count polynomials such that

S(p1, p2, p3;λ1z1, λ2z2, λ3z3) = λl11 λ
l2
2 λ

l3
3 S(p1, p2, p3; z1, z2, z3) , (6.1)

where zi · pi = 0 and

p1 + p2 + p3 = 0 , p2
i = −M2

i . (6.2)

On-shellness and momentum conservation tell us that the contractions pi ·pj can be written

in terms of the particle masses and can therefore be dropped. Further, momentum conser-

vation and transversality imply that z1 · p2 = −z1 · p3. Therefore, the general solution is a

linear combination of

S(n12, n13, n23) = (z1 · z2)n12(z1 · z3)n13(z2 · z3)n23(z1 · p2)m1(z2 · p3)m2(z3 · p1)m3 , (6.3)

17That this is the right condition to recover the tensor is clear in the rest frame of the particle, where

the polarization tensor is purely spatial.
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where

mi = li −
∑
j 6=i

nij ≥ 0 . (6.4)

Since this is the same condition as eq. (4.18), the number of solutions is given by exactly the

same combinatorial problem that we solved for CFT three-point functions. It is clear that

there are no parity odd structures available in dimension bigger than 5 and in 5 dimensions

we have the unique structure

ε(z1, z2, z3, p1, p2) = −ε(z1, z2, z3, p1, p3) = ε(z1, z2, z3, p2, p3) , (6.5)

in perfect agreement with the results of section 4.2.3 for parity odd correlators.

Actually, the rule seems to work even beyond the three-point function level. Indeed,

the most general n-particle scattering amplitude is a linear combination of n∏
i=1

n∏
j 6=i,i+1

(zi · pj)mij

 n∏
i<j

(zi · zj)nij , (6.6)

where
n∑

j 6=i,i+1

mij +

n∑
j 6=i

nij = li . (6.7)

This is identical to the condition (4.77) for counting general tensor structures in an n-point

conformal correlator. Moreover, the coefficients in the linear combination of structures for

the S-matrix can be arbitrary functions of the Mandelstam invariants, in direct analogy with

the functions fk of the cross-ratios in the n-point conformal correlators (4.72). This match

strongly suggests that there is a one-to-one correspondence between n-particle scattering

amplitudes and n-point conformal correlators.

6.1 Massless particles

Let us now study massless particles. In this case, the scattering amplitude must be invariant

under the infinitesimal gauge transformation

ζµ1...µl → ζµ1...µl + p(µ1
Λµ2...µl) . (6.8)

This corresponds to invariance under

zµ → zµ + ε pµ (6.9)

to first order in ε. The problem of finding gauge invariant 3-particle scattering amplitudes

is then reduced to finding linear combinations of the structures (6.3) that are invariant

under (6.9) to first order in ε. Recalling that p2
i = 0, it is easy to see that

δ1S(n12, n13, n23) = ε1

[
n13 S1(n12, n13 − 1, n23)− n12 S1(n12 − 1, n13, n23)

]
, (6.10)

δ2S(n12, n13, n23) = ε2

[
n12 S2(n12 − 1, n13, n23)− n23 S2(n12, n13, n23 − 1)

]
, (6.11)

δ3S(n12, n13, n23) = ε3

[
n23 S3(n12, n13, n23 − 1)− n13 S3(n12, n13 − 1, n23)

]
, (6.12)
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where Si is given by the same expression as S but with li → li − 1. This suggests starting

with the ansatz
k∑
i=0

ai S(i, k − i, n23) (6.13)

to impose gauge invariance for particle 1. We then find that

0 =

k∑
i=0

(ai i S1(i− 1, k − i, n23)− ai (k − i)S1(i, k − i− 1, n23))

=
k∑
i=1

(ai i− ai−1 (k − i+ 1)) S1(i− 1, k − i, n23) , (6.14)

which fixes all the coefficients up to an overall normalization,

ai =
k − i+ 1

i
ai−1 =

k!

i!(k − i)!
a0 . (6.15)

Notice that this solution only exists for k ≤ l1.

Imposing gauge invariance also on particle 2, we find the amplitude

Tk =
k∑
i=0

k−i∑
j=0

k!

i!j!(k − i− j)!
S(i, j, k − i− j) . (6.16)

Gauge invariance of particle 3 is automatic. Note that this solution only exists for k smaller

(or equal) than all the spins li. Therefore, the number of possible scattering amplitudes

between 3 massless higher spin particles is

1 + min(l1, l2, l3) .

This matches the counting of conformal three-point functions of conserved tensors in d ≥ 4

(see table 1).

It is also interesting to notice the permutation symmetry properties

Tk(1, 2, 3) = Tk(2, 3, 1) = Tk(3, 1, 2) = (−1)
∑
liTk(2, 1, 3) . (6.17)

In particular, this means that photons don’t interact; one needs a non-abelian gauge sym-

metry to have a three-point function of spin 1 massless particles.

To make further contact with the results of section 5.3, we can consider the case when

one of the three particles is massive. In this case the analysis is simplified by going to the

rest frame of the massive particle, so that we are dealing with a decay amplitude. It is also

helpful to completely fix the gauge symmetry. The amplitude has to be constructed by

contracting the purely spatial polarization tensors ε1,2,3 with the spatial momentum of the

decay products p. We will assume that the decaying particle 3 has arbitrary spin l, while

the massless decay products have the same spin j, focusing on the case j = 1, 2. Since ε1,2

are transverse to p, it’s easy to construct the amplitudes:

j = 1 : (ε1 · ε2)(ε3 · pl) , ε1µ1ε2µ2(ε3 · pl−2)µ1µ2 , (6.18)

j = 2 : (ε1 · ε2)(ε3 · pl) , (ε1 · ε2)µ1µ2(ε3 · pl−2)µ1µ2 , ε1µ1µ2ε2µ3µ4(ε3 · pl−4)µ1µ2µ3µ4 .
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This matches the number of structures found in table 1, including the symmetry/anti-

symmetry of the current correlators, corresponding to parity under p → −p. Notice that

for low l one runs out of indices to contract with p and the number of amplitudes is reduced,

again in agreement with table 1.

6.2 Four dimensions

In four dimensions, the 5 vectors z1, z2, z3, p1, p2 can not be linearly independent. Therefore,

the determinant

det
1≤i,j≤5

(zi · zj)
∣∣∣∣
z4=p1
z5=p2

(6.19)

must vanish. This gives the following identity:1

2

3∑
i

M4
i −

3∑
i<j

M2
iM

2
j

 (z1 · z2)(z1 · z3)(z2 · z3)

= 2(z1 · z2)(z1 · p2)(z2 · p3)(z3 · p1)2 −M2
1 (z1 · p2)(z2 · z3)

+ (M2
1 −M2

2 −M2
3 )(z2 · p3)(z3 · p1)(z1 · z2)(z1 · z3) + cyclic . (6.20)

Thus, we do not need to use the structure (z1 · z2)(z1 · z3)(z2 · z3), and we recover precisely

the counting of CFT three-point functions in three dimensions.

In the massless case, there is an even simpler relation

0 = (z2 · p3)(z3 · p1)z1 + (z1 · p2)(z3 · p1)z2 + (z2 · p3)(z1 · p2)z3

− (z1 · z3)(z2 · p3)p1 + (z2 · z3)(z1 · p2)p2 . (6.21)

Taking the inner product with z1 we re-obtain the identity (6.20) in the massless case

(z1 · z2)(z3 · p1) + (z1 · z3)(z2 · p3) + (z2 · z3)(z1 · p2) = 0 , (6.22)

which relates the basic structures as

S(n12 + 1, n13, n23) + S(n12, n13 + 1, n23) + S(n12, n13, n23 + 1) = 0 , (6.23)

assuming that all mi = li −
∑

j nij are non-zero. Therefore, we can write all structures in

terms of structures with n23 = 0:

S(n12, n13, n23) = (−1)n23

n23∑
i=0

n23!

i!(n23 − i)!
S(n12 + i, n13 + n23 − i, 0) . (6.24)

This reduces the gauge invariant amplitude to

Tk =

k∑
i=0

k−i∑
j=0

k!(−1)k−i−j

i!j!(k − i− j)!

k−i−j∑
t=0

(k − i− j)!
t!(k − i− j − t)!

S(i+ t, k − i− t, 0)

=
∑

i+j+t+u=k

k!(−1)t+u

i!j!t!u!
S(i+ t, j + u, 0)

=
∑
r+s=k

S(r, s, 0)
k!

r!s!

∑
i+t=r

(−1)t
r!

i!t!

∑
j+u=s

(−1)u
s!

j!u!

= 0 (6.25)
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in general. However, there are two special cases: k = 0 and k = min(l1, l2, l3). It is clear

that T0 does not vanish identically and is gauge invariant. When k takes its maximal value,

equal to the smaller spin (which we choose to be l1), the identity (6.24) can not be used.

In particular, S(i, l1− i− 1, 1) with i = 0, 1, . . . , l1− 1 can not be written solely in terms of

structures with n23 = 0. The best we can do is to reduce it down to structures with n23 = 0

and n23 = 1. We conclude that in 4 dimensions there are only 2 parity even structures

for the scattering amplitude of 3 massless higher spin fields. This result agrees with the

conjecture of [40] that there are only 2 independent structures for the three-point function

of conserved tensors in CFT3.

Here we only considered parity even structures. It should be possible to give an

analogous discussion for parity odd structures, where we expect to find one amplitude if the

spins {l1, l2, l3} satisfy the triangle inequality and zero otherwise, to match the conjecture

of [40] in the parity odd case.

6.3 Relation to AdS/CFT duality

In the case of polynomial scattering amplitudes, we can use AdS/CFT to provide an ex-

plicit map from scattering amplitudes in Md+1 to CFTd correlators. We simply construct

a contact Witten diagram that connects n bulk-to-boundary propagators to the local in-

teraction vertex corresponding to the n-particle S-matrix element. This map was already

explored in the case of four-point functions of scalar operators in [9, 48]. Above, we saw

that it should also extend to n-point functions of tensor operators. However, when the

scattering amplitude has poles describing a mediated interaction, the situation is more

complicated. It would be very interesting to construct an explicit map from S-matrix ele-

ments to conformal correlators that is also valid in this case. The Mellin representation of

conformal correlators [14, 16, 17, 36] may be useful in this context, given its close structural

analogy to scattering amplitudes.

Let us now give this map explicitly in the simplest case of three particle scattering.

To each S-matrix element S(n12, n13, n23) given in (6.3) we can associate a cubic local

interaction vertex in the Lagrangian for AdS fields given by

V(n12, n13, n23) =
(

(∇ν)m2 φ
µ1...µl1
1

)(
(∇ρ)m3 φ

ν1...νl2
2

)
×
(

(∇µ)m1 φ
ρ1...ρl3
3

)
(gµν)n12(gµρ)

n13(gνρ)
n23 , (6.26)

where Greek indices denote AdS indices. We use a schematic notation where, for example,

(∇ν)m2 is the covariant derivative acting m2 times on the field φ1, with indices contracted

with the ν indices of the field φ2. The notation used in (gµν)n12 tells us that there are

n12 contractions of the indices of the fields φ1 and φ2. We recall that the integers mi are

determined by the nij ’s through the constraint mi +
∑

j nij = li.

The AdS/CFT duality gives an explicit rule on how to map the above interaction

vertex to a correlation function of operators dual to the fields φi: one simply computes the

Witten diagram by replacing in (6.26) the fields by their bulk-to-boundary propagators,

and then integrates over the AdS interaction point. We shall denote the bulk-to-boundary
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propagator from an AdS point y to a boundary point x by

Πµ1...µl,a1...al(y, x) . (6.27)

This propagator obeys the bulk equation

∇ν∇νΠµ1...µl,a1...al = (∆(∆− d)− l) Πµ1...µl,a1...al , (6.28)

and has vanishing divergence

∇µΠµµ2...µl,a1...al = 0 . (6.29)

From AdS/CFT one expects that all three-point functions can be written as a linear combi-

nation of this set of Witten diagrams. Of course the basis of three-point functions obtained

this way is not the same basis of section 4. In particular, Witten diagrams give a basis

of tensor structures where the constraints arising from operator conservation are simpler

to formulate.

Let us then analyze in more detail the case of conserved spin l operators. We wish to

understand the constraints imposed on the bulk interaction vertices V(n12, n13, n23) that

arise from current conservation in the CFT side. The boundary divergence acting on the

bulk-to-boundary propagator of dimension ∆ = d− l + 2 is pure gauge, i.e.

∂a Πµ1...µl1 ,aa2...al = ∇(µ1Λµ2...µl1 ),a2...al , (6.30)

where Λ satisfies the bulk equation (6.28). Therefore, as expected, current conservation in

the boundary becomes gauge invariance in the bulk.18

Let us then look for gauge invariant linear combinations of vertices of the type

V =
∑
{nij}

a(nij)V(nij) . (6.31)

Suppose that we consider the field φµ1...µl
1 = ∇(µ1Λµ2...µl) to be pure gauge. After some inte-

grations by parts, and using the equations of motion, the vertex V(n12, n13, n23) transforms

to

δ1V(nij)=γ (l1−n12−n13) Ṽ(nij) + n12Ṽ(n12−1, n13, n23)− n13Ṽ(n12, n13−1, n23) , (6.32)

where

γ =
1

2

(
µ2

2 − µ2
1 − µ2

3

)
, µ2

i = ∆i(∆i − d)− li . (6.33)

Note that here Ṽ denotes the vertex introduced in (6.26) with φ1 replaced by the gauge

tensor Λ of spin l1 − 1. This equation is the direct analogue of (6.10) in flat space. The

only difference is the appearance of an extra term proportional to the mass squared of the

higher spin gauge fields in AdS. We conclude that gauge invariance imposes the constraint

γ (l1−n12−n13) a(nij) + (n12+1) a(n12+1, n13, n23)− (n13+1) a(n12, n13+1, n23) = 0 ,

(6.34)

on the coefficients of the expansion (6.31). Imposing gauge invariance on φ2 and φ3 pro-

duces similar equations.

18In the original three graviton case of Hofman and Maldacena [46] this gauge invariance was general

covariance and the vertices were extracted from a generally covariant Lagrangian including the Einstein-

Hilbert term and contractions of the Weyl tensor.
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7 Summary and conclusions

With the formalism developed in this paper, the kinematical constraints arising from con-

formal invariance can be implemented for symmetric traceless operators of arbitrary spin

almost as easily as for scalar operators. Bellow, we briefly summarize the basic rules for

the more pragmatic reader.

Summary

• Embedding space

The natural habitat for conformal field theories is the light cone of the origin of

Md+2. SO(d + 1, 1) Lorentz transformations of the light rays generate conformal

transformations. The usual flat physical space Rd can be obtained by projecting into

the Poincaré section of the light cone

Px = (P+, P−, P a) = (1, x2, xa) . (7.1)

• Primary fields

Primary fields of dimension ∆ and spin l are encoded into a field F (P ;Z), polynomial

in the polarization vector Z, such that

F (λP ;αZ + βP ) = λ−∆αlF (P ;Z) . (7.2)

The usual tensor form of the operator on Rd is obtained from

fa1...al(x) =
1

l!(h− 1)l
Da1 · · ·DalF (Px;Zz,x) , (7.3)

where Da is the differential operator defined in (3.7) and Zz,x = (0, 2x · z, za).

• Correlators

The most general form of the correlator

〈F1(P1;Z1) · · ·Fn(Pn;Zn)〉 (7.4)

compatible with conformal invariance is a linear combination of homogeneous poly-

nomials of degree li in each Zi, each constructed by multiplying the basic building

blocks Vi,jk and Hij given in (4.14) and (4.15). The Pi dependence is then constrained

by the scaling in (7.2).

• Conserved fields

A spin l primary field of dimension ∆ = d− 2 + l obeys the conservation equation

(∂P ·D)F (P ;Z) = 0 , (7.5)

where D is the differential operator defined in (3.30). This condition generates ad-

ditional constraints on the correlators of conserved fields that can be easily imple-

mented.
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The focus of this paper was to develop the formalism, postponing applications to

the near future [12]. We were careful to establish connections with previous work and

exemplify the strength of the method by rederiving many known results. For example,

we have established a one-to-one correspondence with the general three-point function

analysis of Mack [36] and of Osborn and Petkou [38], as well as with recent work on the

three dimensional case in [40].

We have also presented several new results, interesting in their own right. For example,

we reduced the problem of counting conformal three-point functions of operators with spin

to the simple combinatorial problem depicted in figure 2, which we solved in closed form

in eq. (4.20). For spin 1 currents and the stress tensor, we studied how conservation leads

to a reduction in the number of three-point functions with an arbitrary spin l primary. We

have also discussed a general rule for counting the number of three-point functions in terms

of flat space S-matrices in d+1 dimensions. Using this rule, we conjecture that the number

of independent tensor structures for three-point functions of conserved tensors in d ≥ 4 is

given by 1 + min(l1, l2, l3). In three dimensions, the number of structures is reduced to 2

as claimed in [40].

In this paper we have been dealing with correlators of bosonic fields, but it should

be pointed out that the embedding formalism can be also developed for fermion corre-

lators [26]. Finally, although we have limited the discussion to the symmetric traceless

primaries, it should not be too difficult to extend the formalism to anti-symmetric fields

or fields of mixed symmetry, using polynomials in Grassmann variables.

Note added. When this paper was being finalized, ref. [17] appeared which among other

things points out that conformal structures corresponding to operators with spin can be

constructed from a smaller set of elementary structures. Our structures Vi,jk and Hij are

index-free equivalents of the structures XMk
ij and IMiMj appearing in [17]. We believe that

our index-free formalism is cleaner and more versatile, especially when various degeneracies

among basic structures need to be taken into account, as in several situations discussed

above, and also when considering traceless tensors.
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A Three-point function for (spin 2)-(spin 2)-(spin l)

In this appendix we will apply the formalism developed in section 5 to the case of a three-

point function between the spin 2 stress tensor Tab at x1 and x2 and a dimension ∆ operator

of spin l at x3,

〈Tab(x1)Tcd(x2)φe1···el(x3)〉. (A.1)

When l is even, the embedding function (prior to imposing the conservation constraints)

has 10 possible structures with coefficients αa:

G̃({Pi;Zi}) =

10∑
a=1

αaAa(Vi, Hij)

(P12)d+2−∆+l
2 (P13)

∆+l
2 (P23)

∆+l
2

, (A.2)

where the structures symmetric under exchanging {P1, Z1} with {P2, Z2} are given by

Aa(Vi, Hij) =



V 2
1 V

2
2 V

l
3

(H13V
2

2 V1 +H23V
2

1 V2)V l−1
3

H12V1V2V
l

3

(H13V2 +H23V1)H12V
l−1

3

H13H23V1V2V
l−2

3

H2
12V

l
3

(H2
13V

2
2 +H2

23V
2

1 )V l−2
3

H12H23H13V
l−2

3

(H13H
2
23V1 +H23H

2
13V2)V l−3

3

H2
13H

2
23V

l−4
3



. (A.3)

We can then compute the divergence at P1 and drop terms of O(Z2
1 , Z1 · P1) to obtain

(∂P1 ·DZ1) G̃→

8∑
a=1

βaBa(Vi, Hij)

(P12)d+2−∆+l
2 (P13)

∆+l
2 (P23)

∆+l
2

, (A.4)

where we have chosen the basis of structures

Ba(Vi, Hij) =



V1V
2

2 V
l

3

H13V
2

2 V
l−1

3

H23V1V2V
l−1

3

H12V2V
l

3

H13H23V2V
l−2

3

H12H23V
l−1

3

H2
23V1V

l−2
3

H13H
2
23V

l−3
3


, (A.5)
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and the coefficients βa are given by

β1 = α1 (2− l + ∆− d(1− d+ ∆)) + α2

(
−2 + l −∆ +

1

2
d(2− 2d− l + ∆)

)
+ α3

(
−2 + l −∆ +

1

2
d(2 + l + ∆)

)
+ 2α4 (2− d− l + ∆) , (A.6)

β2 = −α1l +
1

2
α2

(
d2 + 2l − d∆

)
+ α3l +

1

2
α4 ((d− 4)l + d∆) + α7d(−2d− l + ∆), (A.7)

β3 = α2

(
2 + d2 − l + ∆− d(2 + ∆)

)
+

1

2
α3dl +

1

2
α4d(−2 + l + ∆)

+ α5

(
−2 + l −∆ +

1

2
d(4− 2d− l + ∆)

)
− 2α8(−2 + d+ l −∆), (A.8)

β4 = 2α1 − 2α2 +
1

2
α3

(
−4 + d2 − d∆

)
+ α4

(
4− 1

2
d(2d+ l −∆)

)
+ α6d(1 + ∆), (A.9)

β5 = −α2(l − 1) +
1

2
α4d(l − 1) +

1

2
α5

(
−2 + d2 + 2l − d∆

)
− 2α7d

+
1

2
α8 (4− 4l + d(−2 + l + ∆)) + α9d(2− 2d− l + ∆), (A.10)

β6 = α2 +
1

2
α4d(−1 + d−∆)− α5 + α6dl + α8

(
2 +

1

2
d(2− 2d− l + ∆)

)
, (A.11)

β7 =
1

2
α4d(l − 1)− 1

2
α5d+ α7

(
2 + d2 − l + ∆− d(1 + ∆)

)
+ α8 (2− d− l + ∆)

− 1

2
α9(d− 2) (−2 + 2d+ l −∆) , (A.12)

β8 = −α7(l − 2) +
1

2
α8(d− 2)(l − 2) +

1

2
α9

(
d2 + 2(l − 2)− d(2 + ∆)

)
+ α10d (4− 2d− l + ∆) . (A.13)

Setting each of these coefficients to zero would näıvely reduce the number of structures

from 10 down to 2. However, one of the equations is linearly dependent due to the relation

0 = 2β1l + 2β2(d2 − l + ∆− d∆)− β3(2l + d(2 + d−∆)) + β4(d− 2)l

− β5(d− 2)(2d+ l −∆)− β6(d− 2)(l + ∆) + 2β7d(2d+ l −∆), (A.14)

so the number of independent structures is actually reduced from 10 down to 3.

Next let us consider the case that l is odd. In this case there are initially 4 possible

structures invariant under exchanging {P1, Z1} with {P2, Z2}:

G̃({Pi;Zi}) =

4∑
a=1

γiGa(Vi, Hij)

(P12)d+2−∆+l
2 (P13)

∆+l
2 (P23)

∆+l
2

, (A.15)

with

Ga(Vi, Hij) =


(H13V

2
2 V1 −H23V

2
1 V2)V l−1

3

(H13V2 −H23V1)H12V
l−1

3

(H2
13V

2
2 −H2

23V
2

1 )V l−2
3

(H2
23H13V1 −H2

13H23V2)V l−3
3

 . (A.16)
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Then computing the divergence at P1 and dropping the usual terms gives

(∂P1 ·DZ1) G̃→

8∑
a=1

δaBa(Vi, Hij)

(P12)d+2−∆+l
2 (P13)

∆+l
2 (P23)

∆+l
2

, (A.17)

where the coefficients δi are given by

δ1 =
1

2
γ1

(
(d− 2)(2− l + ∆)− 2d2

)
+ 2γ2 (2− d− l + ∆) , (A.18)

δ2 =
1

2
γ1

(
d2 + 2l − d∆

)
+

1

2
γ2 ((d− 4)l + d∆) + γ3d (−2d− l + ∆) , (A.19)

δ3 = γ1 (−2 + l −∆− d(d−∆)) + γ2

(
2(2− l + ∆)− 1

2
d(2 + l + ∆)

)
, (A.20)

δ4 = −2γ1 + γ2

(
4− 1

2
d(2d+ l −∆)

)
, (A.21)

δ5 = γ1(l − 1) +
1

2
γ2(d− 4)(l − 1)− 2γ3d+ γ4d (−2 + 2d+ l −∆) , (A.22)

δ6 = −γ1 + γ2

(
2− 1

2
d(1 + d−∆)

)
, (A.23)

δ7 = −1

2
γ2d(l − 1) + γ3 (−2 + l −∆ + d(1− d+ ∆))

+
1

2
γ4(d− 2)(2− 2d− l + ∆), (A.24)

δ8 = γ3(l − 2) + γ4

(
−2 + l +

1

2
d(2 + d−∆)

)
. (A.25)

Setting each of these coefficients to zero, it is straightforward to verify that there are

precisely 4 linearly independent constraints, forcing γ1 = γ2 = γ3 = γ4 = 0. Thus, an odd

l operator cannot appear in the OPE of the stress tensor with itself.
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