14 research outputs found

    Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer

    Get PDF
    Aerosols from the Sarychev volcano eruption (Kuril Islands, northeast of Japan) were observed in the Arctic lower stratosphere a few days after the strongest SO2 injection which occurred on 15 and 16 June 2009. From the observations provided by the Infrared Atmospheric Sounding Interferometer (IASI) an estimated 0.9 Tg of sulphur dioxide was injected into the upper troposphere and lower stratosphere (UTLS). The resultant stratospheric sulphate aerosols were detected from satellites by the Optical Spectrograph and Infrared Imaging System (OSIRIS) limb sounder and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and from the surface by the Network for the Detection of Atmospheric Composition Changes (NDACC) lidar deployed at OHP (Observatoire de Haute-Provence, France). By the first week of July the aerosol plume had spread out over the entire Arctic region. The Sarychev-induced stratospheric aerosol over the Kiruna region (north of Sweden) was measured by the Stratospheric and Tropospheric Aerosol Counter (STAC) during eight balloon flights planned in August and September 2009. During this balloon campaign the Micro RadiomĂštre Ballon (MicroRADIBAL) and the Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) remote-sensing instruments also observed these aerosols. Aerosol concentrations returned to near-background levels by spring 2010. The effective radius, the surface area density (SAD), the aerosol extinction, and the total sulphur mass from STAC in situ measurements are enhanced with mean values in the range 0.15-0.21 ÎŒm, 5.5-14.7 ÎŒm2 cm-3, 5.5-29.5 × 10-4 km-1, and 4.9-12.6 × 10-10 kg[S] kg-1[air], respectively, between 14 km and 18 km. The observed and modelled e-folding time of sulphate aerosols from the Sarychev eruption is around 70-80 days, a value much shorter than the 12-14 months calculated for aerosols from the 1991 eruption of Mt Pinatubo. The OSIRIS stratospheric aerosol optical depth (AOD) at 750 nm is enhanced by a factor of 6, with a value of 0.02 in late July compared to 0.0035 before the eruption. The HadGEM2 and MIMOSA model outputs indicate that aerosol layers in polar region up to 14-15 km are largely modulated by stratosphere-troposphere exchange processes. The spatial extent of the Sarychev plume is well represented in the HadGEM2 model with lower altitudes of the plume being controlled by upper tropospheric troughs which displace the plume downward and upper altitudes around 18-20 km, in agreement with lidar observations. Good consistency is found between the HadGEM2 sulphur mass density and the value inferred from the STAC observations, with a maximum located about 1 km above the tropopause ranging from 1 to 2 × 10 -9 kg[S] kg-1[air], which is one order of magnitude higher than the background level. © Author(s) 2013.The authors thank the CNES balloon launching team for successful operations and the Swedish Space Corporation at Esrange. The ETHER database (CNES-INSUCNRS) and the CNES “sous-direction Ballon” are partners of the project. The StraPolEt ÂŽ e project has been funded by the French ÂŽ “Agence Nationale de la Recherche” (ANR-BLAN08-1-31627), the “Centre National d’Etudes Spatiales” (CNES), and the “Institut ÂŽ Polaire Paul-Emile Victor” (IPEV). The AEROWAVE (Aerosols, Water Vapor and Electricity) and the HALOHA (HALOgen in High Altitudes) projects have been funded by the recently created French CNES-INSU Balloon Committee (so-called CSTB). We are grateful to Slimane Bekki and David Cugniet for their constructive comments about the AER-UPMC 2-D model, to Marc-Antoine Drouin for his help about the MIMOSA model, and to the LPC2E technical team for this successful campaign. Jim Haywood and Andy Jones were supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). IASI was developed and built under the responsibility of the Centre National d’Etudes Spatiales (CNES, France). It is flown on board the Metop ÂŽ satellites as part of the EUMETSAT Polar System. The IASI L1 data are received through the EUMETCast near-real-time data distribution service. L. Clarisse is a postdoctoral researcher with FRS-FNRS. We acknowledge the CALIOP team for acquiring and processing data as well as the ICARE team for providing and maintaining the computational facilities to store them. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), France (CNES), and Finland (Tekes). This study was supported by the French VOLTAIRE Labex (Laboratoire d’Excellence ANR-10-LABX-100-01) managed by the University of Orleans

    Anti-cytokine therapy in fibrosing alveolitis: where are we now?

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a condition that has a poor prognosis, with a median survival of 4-5 years irrespective of treatment. Ziesche et al (N Engl J Med 1999, 341: 1264-1269) describe an open randomised trial of 18 patients with IPF, unresponsive to corticosteroid treatment at high dose. Nine patients were treated with continued corticosteroid and nine with prednisolone plus interferon-Îł 1b (IFN-Îł). Significant benefits in physiological parameters are reported in the IFN-Îł-treated group. An analysis of lung tissue by reverse-transcriptase-mediated polymerase chain reaction showed corresponding decreases in the transcription of transforming growth factor-ÎČ1 and connective tissue growth factor. This is the first report of treatment showing efficacy in this disease, albeit in a very preliminary study, but the data should be viewed with caution. This study is discussed in the context of other published studies of treatment for IPF and the scientific rationale on which it was based

    The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment

    Get PDF
    This is the final version. Available on open access from the European Geosciences Union via the DOI in this recordCode and data availability: All model data used in this work are available from the Earth System Grid Federation (WCRP, 2021; https://esgf-node.llnl.gov/projects/cmip6, last access: 14 July 2021).As part of the Geoengineering Model Intercomparison Project a numerical experiment known as G6sulfur has been designed in which temperatures under a high-forcing future scenario (SSP5-8.5) are reduced to those under a medium-forcing scenario (SSP2-4.5) using the proposed geoengineering technique of stratospheric aerosol intervention (SAI). G6sulfur involves introducing sulfuric acid aerosol into the tropical stratosphere where it reflects incoming sunlight back to space, thus cooling the planet. Here, we compare the results from six Earth-system models that have performed the G6sulfur experiment and examine how SAI affects two important modes of natural variability, the northern wintertime North Atlantic Oscillation (NAO) and the Quasi-Biennial Oscillation (QBO). Although all models show that SAI is successful in reducing global mean temperature as designed, they are also consistent in showing that it forces an increasingly positive phase of the NAO as the injection rate increases over the course of the 21st century, exacerbating precipitation reductions over parts of southern Europe compared with SSP5-8.5. In contrast to the robust result for the NAO, there is less consistency for the impact on the QBO, but the results nevertheless indicate a risk that equatorial SAI could cause the QBO to stall and become locked in a phase with permanent westerly winds in the lower stratosphere.Department for Business, Energy and Industrial Strategy, UK GovernmentSilverLining, USANatural Environment Research Council (NERC)Agence Nationale de la Recherce, FranceNational Science Foundation (NSF)Indiana University Environmental Resilience Institute, USAPrepared for Environmental Change Grand Challenge initiative, USAEuropean Union Horizon 2020Deutsche Forschungsgemeinschaft Research Unit VollImpact, German

    Calibration of acoustic instruments

    No full text
    Acoustic instrument calibration is fundamental to the quantitative use of its data for estimating aquatic resource abundance. Regular calibrations also allow instrument performance to be monitored to detect changes due to the environment or component dynamics, degradation, or failure. This is the second ICES Cooperative Research Report (CRR) focussed on calibrations of acoustic instruments. The first, CRR No. 144 (Foote et al., 1987), was published during the era of analogue electronics more than a quarter of a century ago. Since then, not only has the acoustic equipment improved vastly with digital electronics and signal processing, but the techniques for applying them to studies of marine organisms have both advanced and diversified. Motivating, facilitating, and expediting these developments is the work of the Fisheries Acoustics, Science and Technology Working Group (WGFAST) of the International Council for the Exploration of the Sea (ICES). CRR No. 144 guided the fisheries acoustics community to uniformly apply the sphere method to calibrate survey equipment, generally single-frequency, split-beam echosounders. Today, surveys of fishery resources are conducted using a large variety of acoustic instruments including, but not limited to, single-frequency, multifrequency, single-beam, split-beam, broad bandwidth, and multibeam echosounders; side-scan and scanning sonars; acoustic Doppler current profilers; and acoustic cameras. These instruments differ in the ways in which they function, are utilized, and the types of measurements they provide. In most cases, they also require different calibration techniques for optimizing the accuracy and characterizing the precision of the measurements. With technological innovation proceeding at an ever faster pace, the challenge to create a comprehensive and practical guide to calibrating acoustic instruments is formidable. Obviously, not all acoustic instrumentation and methods are addressed here. The ones that are addressed are in various states of maturity. Therefore, the practical aims of this CRR are to document (i) acoustic instruments currently used in fisheries research and surveys, (ii) theoretical principles of calibrating these instruments, and (iii) methods currently being practiced for a selection of commonly used instruments. To meet these goals, the WGFAST formed the Study Group on Calibration of Acoustic Instruments (SGCal) at its meeting in April 2009. The SGCal first met in San Diego, CA, USA in April 2010 to outline the document. Some chapters were drafted intersessionally. The SGCal met for the second time in Reykjavik, Iceland in May 2011 to collectively review some draft chapters. The drafts were refined intersessionally and merged. The draft CRR was collectively reviewed at meetings of the SGCal, in Pasaia, Spain in April 2013 and in New Bedford, MA, USA in May 2014. Multiple independent reviewers provided input, and the final editing was completed in 2014. The authors hope that this CRR will be a valuable reference to both novice and experienced users of fishery acoustic instruments, but recognize that it is a provisional guide that requires refinement and update as the field continues to progress

    Multibeam sonar backscatter data processing

    No full text
    Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables
    corecore