120 research outputs found

    Redesigning the advanced pharmacy practice experiential education from hospital to home: A COVID-19 scenario

    Get PDF
    Introduction: During the 2020 COVID-19 pandemic, suspension of many educational activities occurred to mitigate the risks of infection spread. For pharmacy students in their internship year, many efforts have been made to move their experiential training to a virtual platform without compromising learning outcomes. Objectives: Redesign the advanced pharmacy practice experience (APPE) to remote learning without compromising the learning outcomes; Develop an appropriate teaching modality/strategy and assessment method for remote APPE; To drive the change in experiential education by providing guidance for other pharmacy schools dealing with similar situations. Restructured APPE: Eighty-seven interns were switched to an online internship with five specialties based on the availability of the preceptors, namely internal medicine, infectious diseases, oncology, total parenteral nutrition, and psychiatry. Experiential education activities such as drug information questions, case presentations, and clinical pharmacy topic discussions took place on virtual platforms. Student assessment was done using adjusted rubrics to suit the online platforms. Student feedback was taken using an online questionnaire and was mostly positive, indicating that they improved their clinical pharmacy knowledge. Conclusion: The authors highlighted the various restructuring modalities and learning methods used for different clinical rotations to achieve the learning outcomes in difficult situations. In future, the authors plan to work with their colleagues in other health colleges to adapt their practices together

    The karyotype of three Brazilian Terrarana frogs (Amphibia, Anura) with evidence of a new Barycholos species

    Get PDF
    A recent substantial rearrangement of the 882 described eleutherodactyline frog species has considerably improved the understanding of their systematics. Nevertheless, many taxonomic aspects of the South American eleutherodactyline species remain unknown and require further investigation using morphological, cytogenetic and molecular approaches. In this work, the karyotypes of the Brazilian species Ischnocnema juipoca (Atibaia and Campos do Jordão, SP), Barycholos cf. ternetzi (Uberlândia, MG, and Porto Nacional, TO), and Pristimantis crepitans (Chapada dos Guimarães and São Vicente, MT) were analyzed using Giemsa staining, Ag-NOR labeling, and C-banding techniques. All individuals had a diploid number of 22 chromosomes, but the Fundamental Numbers were different among species. The herein described low chromosome number of Pristimantis crepitans is unique within this genus, suggesting that cytogenetically this species is not closely related either to its congeneric species or to Ischnocnema. In addition, karyotype differences, mainly in the NOR position, clearly distinguished the two Barycholos populations, besides indicating the existence of a so far undescribed species in this genus. A taxonomic review could clarify the systematic position of P. crepitans and verify the hypothetic new Barycholos species

    Carbon ion therapy for ameloblastic carcinoma

    Get PDF
    Ameloblastic carcinomas are rare odontogenic tumors. Treatment usually consists of surgical resection and sometimes adjuvant radiation. We report the case of a 71 year-old male patient undergoing carbon ion therapy for extensive local relapse of ameloblastic carcinoma. Treatment outcome was favourable with a complete remission at 6 weeks post completion of radiotherapy while RT-treatment itself was tolerated well with only mild side effects. High dose radiation hence is a potential alternative for patients unfit or unwilling to undergo extensive surgery or in cases when only a subtotal resection is planned or the resection is mutilating

    Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain

    Get PDF
    A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples

    Impact of geriatric comorbidity and polypharmacy on cholinesterase inhibitors prescribing in dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although most guidelines recommend the use of cholinesterase inhibitors (ChEIs) for mild to moderate Alzheimer's Disease, only a small proportion of affected patients receive these drugs. We aimed to study if geriatric comorbidity and polypharmacy influence the prescription of ChEIs in patients with dementia in Germany.</p> <p>Methods</p> <p>We used claims data of 1,848 incident patients with dementia aged 65 years and older. Inclusion criteria were first outpatient diagnoses for dementia in at least three of four consecutive quarters (incidence year). Our dependent variable was the prescription of at least one ChEI in the incidence year. Main independent variables were polypharmacy (defined as the number of prescribed medications categorized into quartiles) and measures of geriatric comorbidity (levels of care dependency and 14 symptom complexes characterizing geriatric patients). Data were analyzed by multivariate logistic regression.</p> <p>Results</p> <p>On average, patients were 78.7 years old (47.6% female) and received 9.7 different medications (interquartile range: 6-13). 44.4% were assigned to one of three care levels and virtually all patients (92.0%) had at least one symptom complex characterizing geriatric patients. 13.0% received at least one ChEI within the incidence year. Patients not assigned to the highest care level were more likely to receive a prescription (e.g., no level of care dependency vs. level 3: adjusted Odds Ratio [OR]: 5.35; 95% CI: 1.61-17.81). The chance decreased with increasing numbers of symptoms characterizing geriatric patients (e.g., 0 vs. 5+ geriatric complexes: OR: 4.23; 95% CI: 2.06-8.69). The overall number of prescribed medications had no influence on ChEI prescription and a significant effect of age could only be found in the univariate analysis. Living in a rural compared to an urban environment and contacts to neurologists or psychiatrists were associated with a significant increase in the likelihood of receiving ChEIs in the multivariate analysis.</p> <p>Conclusions</p> <p>It seems that not age as such but the overall clinical condition of a patient including care dependency and geriatric comorbidities influences the process of decision making on prescription of ChEIs.</p

    Sensing of Replication Stress and Mec1 Activation Act through Two Independent Pathways Involving the 9-1-1 Complex and DNA Polymerase ε

    Get PDF
    Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping, sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (hTopBP1) protein. After DNA damage, Dpb11 is also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo after DNA damage and replication stress. We found that a ddc1Δdpb11-1 double mutant strain displays a synthetic defect in Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-essential subunit of DNA polymerase ε (Polε) are contemporarily absent, indicating that checkpoint activation in response to replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Polε

    Replication and Recombination Factors Contributing to Recombination-Dependent Bypass of DNA Lesions by Template Switch

    Get PDF
    Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair
    corecore