354 research outputs found

    Where Two Are Fighting, the Third Wins: Stronger Selection Facilitates Greater Polymorphism in Traits Conferring Competition-Dispersal Tradeoffs

    Get PDF
    A major conundrum in evolution is that, despite natural selection, polymorphism is still omnipresent in nature: Numerous species exhibit multiple morphs, namely several abundant values of an important trait. Polymorphism is particularly prevalent in asymmetric traits, which are beneficial to their carrier in disruptive competitive interference but at the same time bear disadvantages in other aspects, such as greater mortality or lower fecundity. Here we focus on asymmetric traits in which a better competitor disperses fewer offspring in the absence of competition. We report a general pattern in which polymorphic populations emerge when disruptive selection increases: The stronger the selection, the greater the number of morphs that evolve. This pattern is general and is insensitive to the form of the fitness function. The pattern is somewhat counterintuitive since directional selection is excepted to sharpen the trait distribution and thereby reduce its diversity (but note that similar patterns were suggested in studies that demonstrated increased biodiversity as local selection increases in ecological communities). We explain the underlying mechanism in which stronger selection drives the population towards more competitive values of the trait, which in turn reduces the population density, thereby enabling lesser competitors to stably persist with reduced need to directly compete. Thus, we believe that the pattern is more general and may apply to asymmetric traits more broadly. This robust pattern suggests a comparative, unified explanation to a variety of polymorphic traits in nature.ope

    A nonsense mutation in the beta-carotene oxygenase 2 (BCO2) gene is tightly associated with accumulation of carotenoids in adipose tissue in sheep (Ovis aries)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sheep carcasses with yellow fat are sporadically observed at Norwegian slaughter houses. This phenomenon is known to be inherited as a recessive trait, and is caused by accumulation of carotenoids in adipose tissue. Two enzymes are known to be important in carotenoid degradation in mammals, and are therefore potential candidate genes for this trait. These are <it>beta-carotene 15,15'-monooxygenase 1 (BCMO1) </it>and the <it>beta-carotene oxygenase 2 (BCO2)</it>.</p> <p>Results</p> <p>In the present study the coding region of the <it>BCMO1 </it>and the <it>BCO2 </it>gene were sequenced in yellow fat individuals and compared to the corresponding sequences from control animals with white fat. In the yellow fat individuals a nonsense mutation was found in <it>BCO2 </it>nucleotide position 196 (<it>c.196C>T</it>), introducing a stop codon in amino acid position 66. The full length protein consists of 575 amino acids. In spite of a very low frequency of this mutation in the Norwegian AI-ram population, 16 out of 18 yellow fat lambs were found to be homozygous for this mutation.</p> <p>Conclusion</p> <p>In the present study a nonsense mutation (<it>c.196C>T</it>) in the <it>beta-carotene oxygenase 2 (BCO2) </it>gene is found to strongly associate with the yellow fat phenotype in sheep. The existence of individuals lacking this mutation, but still demonstrating yellow fat, suggests that additional mutations may cause a similar phenotype in this population. The results demonstrate a quantitatively important role for BCO2 in carotenoid degradation, which might indicate a broad enzyme specificity for carotenoids. Animals homozygous for the mutation are not reported to suffer from any negative health or development traits, pointing towards a minor role of BCO2 in vitamin A formation. Genotyping AI rams for <it>c.196C>T </it>can now be actively used in selection against the yellow fat trait.</p

    Characterisation of the bacterial and fungal communities associated with different lesion sizes of Dark Spot Syndrome occurring in the Coral Stephanocoenia intersepta

    Get PDF
    The number and prevalence of coral diseases/syndromes are increasing worldwide. Dark Spot Syndrome (DSS) afflicts numerous coral species and is widespread throughout the Caribbean, yet there are no known causal agents. In this study we aimed to characterise the microbial communities (bacteria and fungi) associated with DSS lesions affecting the coral Stephanocoenia intersepta using nonculture molecular techniques. Bacterial diversity of healthy tissues (H), those in advance of the lesion interface (apparently healthy AH), and three sizes of disease lesions (small, medium, and large) varied significantly (ANOSIM R = 0.052 p,0.001), apart from the medium and large lesions, which were similar in their community profile. Four bacteria fitted into the pattern expected from potential pathogens; namely absent from H, increasing in abundance within AH, and dominant in the lesions themselves. These included ribotypes related to Corynebacterium (KC190237), Acinetobacter (KC190251), Parvularculaceae (KC19027), and Oscillatoria (KC190271). Furthermore, two Vibrio species, a genus including many proposed coral pathogens, dominated the disease lesion and were absent from H and AH tissues, making them candidates as potential pathogens for DSS. In contrast, other members of bacteria from the same genus, such as V. harveyii were present throughout all sample types, supporting previous studies where potential coral pathogens exist in healthy tissues. Fungal diversity varied significantly as well, however the main difference between diseased and healthy tissues was the dominance of one ribotype, closely related to the plant pathogen, Rhytisma acerinum, a known causal agent of tar spot on tree leaves. As the corals’ symbiotic algae have been shown to turn to a darker pigmented state in DSS (giving rise to the syndromes name), the two most likely pathogens are R. acerinum and the bacterium Oscillatoria, which has been identified as the causal agent of the colouration in Black Band Disease, another widespread coral disease

    Object Detection Through Exploration With A Foveated Visual Field

    Get PDF
    We present a foveated object detector (FOD) as a biologically-inspired alternative to the sliding window (SW) approach which is the dominant method of search in computer vision object detection. Similar to the human visual system, the FOD has higher resolution at the fovea and lower resolution at the visual periphery. Consequently, more computational resources are allocated at the fovea and relatively fewer at the periphery. The FOD processes the entire scene, uses retino-specific object detection classifiers to guide eye movements, aligns its fovea with regions of interest in the input image and integrates observations across multiple fixations. Our approach combines modern object detectors from computer vision with a recent model of peripheral pooling regions found at the V1 layer of the human visual system. We assessed various eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD performs on par with the SW detector while bringing significant computational cost savings.Comment: An extended version of this manuscript was published in PLOS Computational Biology (October 2017) at https://doi.org/10.1371/journal.pcbi.100574

    Modality matters for the expression of inducible defenses: introducing a concept of predator modality

    Get PDF
    Background: Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in `modality', that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses. Results: We exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a `concept of modality' in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate. Conclusion: With D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a `concept of modality', we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic `costs of plasticity'. With that, we suggest that `modality' matters as an important factor in understanding and explaining the evolution of inducible defenses

    A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution.</p> <p>Methods</p> <p>Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone.</p> <p>Results</p> <p>Chromosome number, <it>Cot</it>-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A.</p> <p>Conclusions</p> <p>The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm) from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo-cytoplasmic hybrid female still maintains its gynogenetic ability. Based on the present and previous findings, we discuss the association of rapid genetic changes and high genetic diversity with various ploidy levels and multiple reproduction modes in several unisexual and sexual complexes of vertebrates and even other invertebrates.</p

    Colon biopsies for evaluation of acute graft-versus-host disease (A-GVHD) in allogeneic bone marrow transplant patients

    Get PDF
    BACKGROUND: Proper histomorphological interpretation of intestinal acute graft versus host disease (A-GVHD) associated with allogeneic bone marrow transplantation (BMT) is critical for clinical managaement. However, studies methodically evaluating different histomorphological features of A-GVHD are rare. METHODS: Colonic biopsies from 44 allogeneic BMT patients having biopsy-proven cutaneous A-GVHD were compared with colon biopsies from 48 negative controls. RESULTS: A-GVHD showed intra-cryptal apoptosis in 91% and pericryptal apoptosis in adjacent lamina propria in 70% (p < 0.002). Nonspecific apoptosis along the surface epithelium was observed in all groups with comparable frequency. The number of apoptotic cells in mucosa were approximately four times (5.3 per 10 HPF) the negative controls (p < 0.002) in A-GVHD group. 48% of cases with A-GVHD showed decreased number of lymphocytes in lamina propria. Some features, including intraepithelial lymphocytes in surface or crypt epithelium; and neutrophils, eosinophils, and edema in lamina propria, did not demonstrate significant difference in A-GVHD and negative controls. Pericryptal apoptosis, dilated crypts, irregular distribution of crypts, decreased lymphocytes, increased microvessel network, focal fibrosis, presence of muciphages, reactive changes in surface epithelium with mucin depletion, mucosal ulceration, and/or reduced mucosal thickness showed higher association with A-GVHD group. CONCLUSIONS: Intracyptal apoptosis is a reliable indicator of A-GVHD. Its diagnostic significance was improved if intracyptal apoptosis was associated with features which were observed more frequently in A-GVHD group as mentioned above

    Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine

    Get PDF
    Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation

    Opportunities to Learn Mathematics Pedagogy and Connect Classroom Learning to Practice: A Study of Future Teachers in the United States and Singapore

    Get PDF
    In this study, we conducted secondary analyses using the TEDS-M database to explore future mathematics specialists teachers’ opportunities to learn (OTL) how to teach mathematics. We applied latent class analysis techniques to differentiate among groups of prospective mathematics specialists with potentially different OTL mathematics pedagogy within the United States and Singapore. Within the United States, three subgroups were identified: (a) Comprehensive OTL, (b) Limited OTL, and (c) OTL Mathematics Pedagogy. Within Singapore, four subgroups were identified: (a) Comprehensive OTL, (b) Limited Opportunities to Connect Classroom Learning with Practice, (c) OTL Mathematics Pedagogy, and (d) Basic OTL. Understanding the opportunities different prospective teachers had to learn from and their experiences with different components of instructional practice in university and practicum settings has implications for teacher preparation programs
    corecore