1,256 research outputs found

    PGI29 SELECTING CHRONIC CONSTIPATION (CC) CLINICAL TRIAL ENDPOINTS: INCORPORATING THE PATIENT'S VOICE

    Get PDF

    The morphological development of the 3 M. SG. Pronominal suffix on plural nouns in classical Hebrew: Part 1

    Get PDF
    © 2018 National Association of Professors of Hebrew. All Rights Reserved. This article is the first half of a study, continued in the next volume of Hebrew Studies. The 3 m. sg. pronominal suffix on plural nouns is realized in several allomorphs in Classical Hebrew: In early Hebrew inscriptions, the suffix appears as and perhaps as ; in Biblical Hebrew, it usually appears as (sometimes emended from in instances of Masoretic Qere readings), and occasionally as in poetic texts. In this study we provide a unified and principled linguistic account of these textual data, tracing the various phonological developments of the 3 m. sg. genitive suffix on plural nouns, and relating these phonological developments to the phonetic causes underlying them. After analyzing the phonological realizations of the high vocoids ∗U (/w/ and /u/) and ∗Y (/y/ and /i/) and of ∗H (found in the third-person pronominal morphemes), we identify three stages of development that produced the in Biblical Hebrew: (1) the linkage of the number-gender morpheme to a single slot in the skeletal tier (effectively yielding an early diphthong contraction ∗-aI > ē); (2) the deletion of ∗H in selected environments defined by accent and the surrounding vowels; and (3) the phonetically-motivated insertion of the glide ∗y in the hiatus environment [-e:w:]

    Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster

    Get PDF
    BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other

    Intraoperative radiotherapy (IORT) is an option for patients with localized breast recurrences after previous external-beam radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For patients suffering of recurrent breast cancer within the irradiated breast, generally mastectomy is recommended. The normal tissue tolerance does not permit a second full-dose course of radiotherapy to the entire breast after a second breast-conserving surgery (BCS). A novel option is to treat these patients with partial breast irradiation (PBI). This approach is based on the hypothesis that re-irradiation of a limited volume will be effective and result in an acceptable frequency of side effects. The following report presents a single center experience with intraoperative radiotherapy (IORT) during excision of recurrent breast cancer in the previously irradiated breast.</p> <p>Methods</p> <p>Between 4/02 and 11/06, 15 patients were treated for in-breast recurrences at a median of 10 years (3–25) after previous EBRT (10 recurrences in the initial tumor bed, 3 elsewhere in-breast failures, 2 invasive recurrences after previous DCIS). Additional 2 patients were selected for IORT with new primary breast cancer after previous partial breast EBRT for treatment of Hodgkin's disease. IORT with a single dose of 14.7 – 20 Gy 50 kV X-rays at the applicator surface was delivered with the Intrabeam™-device (Carl Zeiss, Oberkochen, Germany).</p> <p>Results</p> <p>After a median follow-up of 26 months (1–60), no local recurrence occurred. 14 out of 17 patients are alive and free of disease progression. Two patients are alive with distant metastases. One patient died 26 months after BCS/IORT due to pulmonary metastases diagnosed 19 months after BCS/IORT. Acute toxicity after IORT was mild with no Grade 3/4 toxicities and cosmetic outcome showed excellent/good/fair results in 7/7/3 cases.</p> <p>Conclusion</p> <p>IORT for recurrent breast cancer using low energy X-rays is a valuable option for patients with recurrent breast cancer after previous radiotherapy.</p

    Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping

    Get PDF
    Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al

    Bayesian inference of biochemical kinetic parameters using the linear noise approximation

    Get PDF
    Background Fluorescent and luminescent gene reporters allow us to dynamically quantify changes in molecular species concentration over time on the single cell level. The mathematical modeling of their interaction through multivariate dynamical models requires the deveopment of effective statistical methods to calibrate such models against available data. Given the prevalence of stochasticity and noise in biochemical systems inference for stochastic models is of special interest. In this paper we present a simple and computationally efficient algorithm for the estimation of biochemical kinetic parameters from gene reporter data. Results We use the linear noise approximation to model biochemical reactions through a stochastic dynamic model which essentially approximates a diffusion model by an ordinary differential equation model with an appropriately defined noise process. An explicit formula for the likelihood function can be derived allowing for computationally efficient parameter estimation. The proposed algorithm is embedded in a Bayesian framework and inference is performed using Markov chain Monte Carlo. Conclusion The major advantage of the method is that in contrast to the more established diffusion approximation based methods the computationally costly methods of data augmentation are not necessary. Our approach also allows for unobserved variables and measurement error. The application of the method to both simulated and experimental data shows that the proposed methodology provides a useful alternative to diffusion approximation based methods

    Polyethylene Oxidation in Total Hip Arthroplasty: Evolution and New Advances

    Get PDF
    Ultra-high molecular weight polyethylene (UHMWPE) remains the gold standard acetabular bearing material for hip arthroplasty. Its successful performance has shown consistent results and survivorship in total hip replacement (THR) above 85% after 15 years, with different patients, surgeons, or designs

    A summer heat wave decreases the immunocompetence of the mesograzer, Idotea baltica

    Get PDF
    Extreme events associated with global change will impose increasing stress on coastal organisms. How strong biological interactions such as the host–parasite arms-race are modulated by environmental change is largely unknown. The immune system of invertebrates, in particular phagocytosis and phenoloxidase activity response are key defence mechanisms against parasites, yet they may be sensitive to environmental perturbations. We here simulated an extreme event that mimicked the European heat wave in 2003 to investigate the effect of environmental change on the immunocompetence of the mesograzer Idotea baltica. Unlike earlier studies, our experiment aimed at simulation of the natural situation as closely as possible by using long acclimation, a slow increase in temperature and a natural community setting including the animals’ providence with natural food sources (Zostera marina and Fucus vesiculosus). Our results demonstrate that a simulated heat wave results in decreased immunocompetence of the mesograzer Idotea baltica, in particular a drop of phagocytosis by 50%. This suggests that global change has the potential to significantly affect host–parasite interactions

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system
    corecore