877 research outputs found

    Holographic Renormalization of general dilaton-axion gravity

    Get PDF
    We consider a very general dilaton-axion system coupled to Einstein-Hilbert gravity in arbitrary dimension and we carry out holographic renormalization for any dimension up to and including five dimensions. This is achieved by developing a new systematic algorithm for iteratively solving the radial Hamilton-Jacobi equation in a derivative expansion. The boundary term derived is valid not only for asymptotically AdS backgrounds, but also for more general asymptotics, including non-conformal branes and Improved Holographic QCD. In the second half of the paper, we apply the general result to Improved Holographic QCD with arbitrary dilaton potential. In particular, we derive the generalized Fefferman-Graham asymptotic expansions and provide a proof of the holographic Ward identities.Comment: 42 pages. v2: two references added. Version published in JHEP. v3: fixed minor typos in eqs. (1.6), (2.3), (3.20), (A.3), (B.8), (B.12) and (B.22

    The holographic fluid dual to vacuum Einstein gravity

    Get PDF
    We present an algorithm for systematically reconstructing a solution of the (d+2)-dimensional vacuum Einstein equations from a (d+1)-dimensional fluid, extending the non-relativistic hydrodynamic expansion of Bredberg et al in arXiv:1101.2451 to arbitrary order. The fluid satisfies equations of motion which are the incompressible Navier-Stokes equations, corrected by specific higher derivative terms. The uniqueness and regularity of this solution is established to all orders and explicit results are given for the bulk metric and the stress tensor of the dual fluid through fifth order in the hydrodynamic expansion. We establish the validity of a relativistic hydrodynamic description for the dual fluid, which has the unusual property of having a vanishing equilibrium energy density. The gravitational results are used to identify transport coefficients of the dual fluid, which also obeys an interesting and exact constraint on its stress tensor. We propose novel Lagrangian models which realise key properties of the holographic fluid.Comment: 31 pages; v2: references added and minor improvements, published versio

    On Exact Symmetries and Massless Vectors in Holographic Flows and other Flux Vacua

    Get PDF
    We analyze the isometries of Type IIB flux vacua based on the Papadopolous-Tseytlin ansatz and identify the related massless bulk vector fields. To this end we devise a general ansatz, valid in any flux compactification, for the fluctuations of the metric and p-forms that diagonalizes the coupled equations. We then illustrate the procedure in the simple case of holographic flows driven by the RR 3-form flux only. Specifically we study the fate of the isometries of the Maldacena-Nunez solution associated to wrapped D5-branes.Comment: 23 page

    The temperature and entropy of CFT on time-dependent backgrounds

    Get PDF
    We express the AdS-Schwarzschild black-hole configuration in coordinates such that the boundary metric is of the FLRW type. We review how this construction can be used in order to calculate the stress-energy tensor of the dual CFT on the FLRW background. We deduce the temperature and entropy of the CFT, which are related to the temperature and entropy of the black hole. We find that the entropy is proportional to the area of an apparent horizon, different from the black-hole event horizon. For a dS boundary we reproduce correctly the intrinsic temperature of dS space.Comment: 19 pages, major revision, several comments added, version to appear in JHE

    Holography of AdS vacuum bubbles

    Full text link
    We consider the fate of AdS vacua connected by tunneling events. A precise holographic dual of thin-walled Coleman--de Luccia bounces is proposed in terms of Fubini instantons in an unstable CFT. This proposal is backed by several qualitative and quantitative checks, including the precise calculation of the instanton action appearing in evaluating the decay rate. Big crunches manifest themselves as time dependent processes which reach the boundary of field space in a finite time. The infinite energy difference involved is identified on the boundary and highlights the ill-defined nature of the bulk setup. We propose a qualitative scenario in which the crunch is resolved by stabilizing the CFT, so that all attempts at crunching always end up shielded from the boundary by the formation of black hole horizons. In all these well defined bulk processes the configurations have the same asymptotics and are finite energy excitations.Comment: version submitted to journal. Note added referring to previous work on holographic instantons

    Holographic Symmetry-Breaking Phases in AdS3_3/CFT2_2

    Full text link
    In this note we study the symmetry-breaking phases of 3D gravity coupled to matter. In particular, we consider black holes with scalar hair as a model of symmetry-breaking phases of a strongly coupled 1+1 dimensional CFT. In the case of a discrete symmetry, we show that these theories admit metastable phases of broken symmetry and study the thermodynamics of these phases. We also demonstrate that the 3D Einstein-Maxwell theory shows continuous symmetry breaking at low temperature. The apparent contradiction with the Coleman-Mermin-Wagner theorem is discussed.Comment: 15 pages, 7 figur

    The RN/CFT Correspondence Revisited

    Full text link
    We reconsidered the quantum gravity description of the near horizon extremal Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS2_2/CFT1_1 correspondence. We found that, for pure electric case, the right moving central charge of dual 1D CFT is 6Q26 Q^2 which is different from the previous result 6Q36 Q^3 of left moving sector obtained by warped AdS3_3/CFT2_2 description. We discussed the discrepancy in these two approaches and examined novel properties of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include

    Janus Black Holes

    Get PDF
    In this paper Janus black holes in AdS3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ black hole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.Comment: 28 pages, 2 figures, reference adde

    Holographic predictions for cosmological 3-point functions

    Get PDF
    We present the holographic predictions for cosmological 3-point correlators, involving both scalar and tensor modes, for a universe which started in a non-geometric holographic phase. Holographic formulae relate the cosmological 3-point functions to stress tensor correlation functions of a holographically dual three-dimensional non-gravitational QFT. We compute these correlators at 1-loop order for a theory containing massless scalars, fermions and gauge fields, and present an extensive analysis of the constraints due to Ward identities showing that they uniquely determine the correlators up to a few constants. We define shapes for all cosmological bispectra and compare the holographic shapes to the slow-roll ones, finding that some are distinguishable while others, perhaps surprisingly, are not.Comment: 51pp; 4 fig

    AdS Black Hole Solutions in the Extended New Massive Gravity

    Full text link
    We have obtained (warped) AdS black hole solutions in the three dimensional extended new massive gravity. We investigate some properties of black holes and obtain central charges of the two dimensional dual CFT. To obtain the central charges, we use the relation between entropy and temperature according to the AdS/CFT dictionary. For AdS black holes, one can also use the central charge function formalism which leads to the same results.Comment: 24pages, some organization corrected, minor corrections, references added, final published versio
    corecore