877 research outputs found
Holographic Renormalization of general dilaton-axion gravity
We consider a very general dilaton-axion system coupled to Einstein-Hilbert
gravity in arbitrary dimension and we carry out holographic renormalization for
any dimension up to and including five dimensions. This is achieved by
developing a new systematic algorithm for iteratively solving the radial
Hamilton-Jacobi equation in a derivative expansion. The boundary term derived
is valid not only for asymptotically AdS backgrounds, but also for more general
asymptotics, including non-conformal branes and Improved Holographic QCD. In
the second half of the paper, we apply the general result to Improved
Holographic QCD with arbitrary dilaton potential. In particular, we derive the
generalized Fefferman-Graham asymptotic expansions and provide a proof of the
holographic Ward identities.Comment: 42 pages. v2: two references added. Version published in JHEP. v3:
fixed minor typos in eqs. (1.6), (2.3), (3.20), (A.3), (B.8), (B.12) and
(B.22
The holographic fluid dual to vacuum Einstein gravity
We present an algorithm for systematically reconstructing a solution of the
(d+2)-dimensional vacuum Einstein equations from a (d+1)-dimensional fluid,
extending the non-relativistic hydrodynamic expansion of Bredberg et al in
arXiv:1101.2451 to arbitrary order. The fluid satisfies equations of motion
which are the incompressible Navier-Stokes equations, corrected by specific
higher derivative terms. The uniqueness and regularity of this solution is
established to all orders and explicit results are given for the bulk metric
and the stress tensor of the dual fluid through fifth order in the hydrodynamic
expansion. We establish the validity of a relativistic hydrodynamic description
for the dual fluid, which has the unusual property of having a vanishing
equilibrium energy density. The gravitational results are used to identify
transport coefficients of the dual fluid, which also obeys an interesting and
exact constraint on its stress tensor. We propose novel Lagrangian models which
realise key properties of the holographic fluid.Comment: 31 pages; v2: references added and minor improvements, published
versio
On Exact Symmetries and Massless Vectors in Holographic Flows and other Flux Vacua
We analyze the isometries of Type IIB flux vacua based on the
Papadopolous-Tseytlin ansatz and identify the related massless bulk vector
fields. To this end we devise a general ansatz, valid in any flux
compactification, for the fluctuations of the metric and p-forms that
diagonalizes the coupled equations. We then illustrate the procedure in the
simple case of holographic flows driven by the RR 3-form flux only.
Specifically we study the fate of the isometries of the Maldacena-Nunez
solution associated to wrapped D5-branes.Comment: 23 page
The temperature and entropy of CFT on time-dependent backgrounds
We express the AdS-Schwarzschild black-hole configuration in coordinates such
that the boundary metric is of the FLRW type. We review how this construction
can be used in order to calculate the stress-energy tensor of the dual CFT on
the FLRW background. We deduce the temperature and entropy of the CFT, which
are related to the temperature and entropy of the black hole. We find that the
entropy is proportional to the area of an apparent horizon, different from the
black-hole event horizon. For a dS boundary we reproduce correctly the
intrinsic temperature of dS space.Comment: 19 pages, major revision, several comments added, version to appear
in JHE
Holography of AdS vacuum bubbles
We consider the fate of AdS vacua connected by tunneling events. A precise
holographic dual of thin-walled Coleman--de Luccia bounces is proposed in terms
of Fubini instantons in an unstable CFT. This proposal is backed by several
qualitative and quantitative checks, including the precise calculation of the
instanton action appearing in evaluating the decay rate. Big crunches manifest
themselves as time dependent processes which reach the boundary of field space
in a finite time. The infinite energy difference involved is identified on the
boundary and highlights the ill-defined nature of the bulk setup. We propose a
qualitative scenario in which the crunch is resolved by stabilizing the CFT, so
that all attempts at crunching always end up shielded from the boundary by the
formation of black hole horizons. In all these well defined bulk processes the
configurations have the same asymptotics and are finite energy excitations.Comment: version submitted to journal. Note added referring to previous work
on holographic instantons
Holographic Symmetry-Breaking Phases in AdS/CFT
In this note we study the symmetry-breaking phases of 3D gravity coupled to
matter. In particular, we consider black holes with scalar hair as a model of
symmetry-breaking phases of a strongly coupled 1+1 dimensional CFT. In the case
of a discrete symmetry, we show that these theories admit metastable phases of
broken symmetry and study the thermodynamics of these phases. We also
demonstrate that the 3D Einstein-Maxwell theory shows continuous symmetry
breaking at low temperature. The apparent contradiction with the
Coleman-Mermin-Wagner theorem is discussed.Comment: 15 pages, 7 figur
The RN/CFT Correspondence Revisited
We reconsidered the quantum gravity description of the near horizon extremal
Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS/CFT
correspondence. We found that, for pure electric case, the right moving central
charge of dual 1D CFT is which is different from the previous result of left moving sector obtained by warped AdS/CFT description. We
discussed the discrepancy in these two approaches and examined novel properties
of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include
Janus Black Holes
In this paper Janus black holes in AdS3 are considered. These are static
solutions of an Einstein-scalar system with broken translation symmetry along
the horizon. These solutions are dual to interface conformal field theories at
finite temperature. An approximate solution is first constructed using
perturbation theory around a planar BTZ black hole. Numerical and exact
solutions valid for all sets of parameters are then found and compared. Using
the exact solution the thermodynamics of the system is analyzed. The entropy
associated with the Janus black hole is calculated and it is found that the
entropy of the black Janus is the sum of the undeformed black hole entropy and
the entanglement entropy associated with the defect.Comment: 28 pages, 2 figures, reference adde
Holographic predictions for cosmological 3-point functions
We present the holographic predictions for cosmological 3-point correlators,
involving both scalar and tensor modes, for a universe which started in a
non-geometric holographic phase. Holographic formulae relate the cosmological
3-point functions to stress tensor correlation functions of a holographically
dual three-dimensional non-gravitational QFT. We compute these correlators at
1-loop order for a theory containing massless scalars, fermions and gauge
fields, and present an extensive analysis of the constraints due to Ward
identities showing that they uniquely determine the correlators up to a few
constants. We define shapes for all cosmological bispectra and compare the
holographic shapes to the slow-roll ones, finding that some are distinguishable
while others, perhaps surprisingly, are not.Comment: 51pp; 4 fig
AdS Black Hole Solutions in the Extended New Massive Gravity
We have obtained (warped) AdS black hole solutions in the three dimensional
extended new massive gravity. We investigate some properties of black holes and
obtain central charges of the two dimensional dual CFT. To obtain the central
charges, we use the relation between entropy and temperature according to the
AdS/CFT dictionary. For AdS black holes, one can also use the central charge
function formalism which leads to the same results.Comment: 24pages, some organization corrected, minor corrections, references
added, final published versio
- …
