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1 Introduction

Understanding the holographic dictionary for holographic models in non asymptotically

AdS spaces has been a long standing problem. It has been a pressing question ever since

physically promising holographic dualities involving non asymptotically AdS backgrounds,

such as the Klebanov-Strassler [1] and Maldacena-Núñez [2] backgrounds, were found,

but it has become even more relevant with the recent interest in the phenomenological

application of holography to condensed matter physics and models of QCD. Even though

numerous attempts have been made to understand aspects of the dictionary of some of

these systems, there are very few cases where a systematic and extensive understanding

has been achieved for non asymptotically AdS backgrounds. These include the analyses of

the dictionary for non-conformal branes [3, 4] and for Schrödinger backgrounds [5].

However, it cannot be overemphasized that the process of understanding the holo-

graphic dictionary, in any holographic model and any background, even beyond the su-

pergravity approximation, can be split into two conceptually distinct steps. The first step

is intrinsically related with the “bulk” holographic model. Namely, one must identify a

suitable boundary in the bulk theory and construct a reduced phase space of the theory in

terms of data on that boundary. This step is exactly analogous to the Fefferman-Graham

reconstruction of the bulk geometry in asymptotically hyperbolic manifolds from bound-

ary data [6]. A systematic way of addressing this question and its connection to a certain
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variational problem at infinity in the most general setting was discussed in [7]. The ap-

proach developed in [7] in principle allows one to algorithmically construct this reduced

phase space for any bulk model. Having completed this step, one not only has achieved a

reformulation of the bulk dynamics in terms of a symplectic space of boundary data that

can unambiguously be identified with the symplectic space of renormalized observables in

any holographically dual theory, but also has automatically made the variational problem

of the bulk theory well defined, which implies that the on-shell action is finite [7, 8].

Only once this first step has been completed, one can directly compare the symplectic

space of boundary data with the symplectic space of gauge-invariant observables in any

candidate holographic dual. This mapping is simply the classical version of the Hilbert

space isomorphism one expects in a fully quantum mechanical holographic duality. On the

bulk side one has the symplectic space of a classical system, being that classical strings

or classical gravity, while on the field theory side the Hilbert space reduces to a classical

symplectic space in some limit where the number of degrees of freedom becomes infinite [9].

In this paper we consider a generic dilaton-axion system coupled to Einstein-Hilbert

gravity in arbitrary dimension with the action (2.1). This system contains the standard

dilaton-axion system in AdS5 dual to the complexified coupling of N = 4 super Yang-

Mills in four dimensions, non-conformal branes [3, 4], as well as Improved Holographic

QCD [10] as special cases. The last two examples admit non asymptotically AdS vacua,

and so the standard dictionary for asymptotically AdS gravity is not applicable. Our aim

here will be to carry out this two-step procedure outlined above for this general dilaton-

axion system and to explore in more detail the consequences for the model of Improved

Holographic QCD.

The semi-phenomenological holographic model dual to large Nc Yang-Mills theory put

forward in [10] (see [11] for an extensive review) is based on the five dimensional two-

derivative (Euclidean) bosonic supergravity action

S = −M3
plN

2
c

�
d5x
√

g
(
R[g]− ξ2λ−2∂µλ∂µλ− Z(λ)∂µχ∂µχ + V (λ)

)
, (1.1)

where the Planck mass M3
pl = 1/g2

s ℓ3
s is related to the five dimensional Newton’s constant by

(16πG5)
−1 = M3

plN
2
c . The field content of this action consists of the five dimensional metric

gµν , a dilaton λ, and an axion χ. These are respectively designed to describe the dynamics of

the lowest dimension gauge-invariant operators of pure Yang-Mills theory, namely the stress

tensor, Tij, Tr (F 2) and Tr (FF̃ ). In particular, λ is proportional to the ’t Hooft coupling,

Ncg
2
Y M , while χ is related to the instanton angle θY M . The constants of proportionality are

not known a priori, but can be determined by comparing the perturbative UV expansion of

the beta functions for the ’t Hooft coupling and θY M with the corresponding holographic

beta functions for the bulk fields λ and χ respectively. These proportionality constants

are nevertheless scheme dependent and so they do not affect the value of any physical

observable [11].

The holographic model is defined by the potential V (λ) and the function Z(λ), as

well as the constant ξ 6= 0, corresponding to the normalization of the kinetic term of the
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dilaton.1 Anticipating that such a model could possibly originate in a non-critical string

theory in five dimensions [10], the metric and the dilaton are expected to come from the

NSNS sector while the axion comes from the RR sector. As was argued in [10], this implies

that the kinetic term of the axion should be O(1/N2
c ) relative to the Einstein-Hilbert term,

the dilaton kinetic term, and the scalar potential. Hence, Z(λ) = O(1/N2
c ), while ξ and

V (λ) are O(N0
c ).

The form of the functions Z(λ) and V (λ) can be constrained by physical input. Firstly,

asymptotic freedom means that at the UV the theory is conformal and so the dual string

vacuum should be asymptotically AdS5. Of course, it also means that the theory is weakly

coupled at the far UV, and so a two-derivative gravity approximation of the form (1.1)

cannot a priori be trusted in that limit. However, the assumption in [10] is that the effect

of the higher derivative terms affecting the dynamics of the lowest lying fields can some-

how be incorporated into a an effective cosmological constant in the potential V (λ), thus

allowing the two-derivative action (1.1) to admit asymptotically AdS solutions. Although

this argument is admittedly difficult, if not impossible, to defend from a string theoretic

point of view, the attitude in [10] is that this assumption can be a posteriori justified by the

success of the model in reasonably describing various qualitative properties of Yang-Mills

theory. Accepting this assumption, means that the dilaton λ must vanish in the far UV

and the functions V (λ) and Z(λ) must admit Taylor expansions of the form2

V (λ) =
12

ℓ2

(
1 +

∞∑

n=1

Vnλn

)
, Z(λ) = (M3

plN
2
c )−1

∞∑

n=0

Znλn, (1.2)

where ℓ is the radius of the AdS corresponding to the UV fixed point, and Vn and Zn

are O(N0
c ). The original motivation for these expansions was that they should be the

holographic analogue of the perturbative expansions of the beta functions βλ and βχ of

the ’t Hooft coupling and instanton angle respectively [10]. In particular, the coefficients

V1 and V2 were argued to be related respectively to the one- and two-loop beta function

of the ’t Hooft coupling. In order to account for the logarithmic running of the coupling,

therefore, one demands that V1 6= 0. As we shall see below, the requirement that V1 6=
0 is indeed crucial for the asymptotic solutions to logarithmically deviate from strictly

AdS asymptotics. However, the beta function is a scheme-dependent quantity which does

not correspond to any physical observable. As we shall see below, the holographic Ward

identities only involve physical, renormalization group invariant quantities.

Further constraints on the functions V (λ) and Z(λ) are imposed by the IR properties

of the model, i.e. as λ → ∞. Specifically, confinement and the absence of certain ‘bad’

singularities in the IR require that [10]

V (λ) ∼ λ2Q (log λ)P , as λ→∞, with





2/3 < Q < 2
√

2/3, P arbitrary,

Q = 2/3, P ≥ 0.
(1.3)

1In [10] ξ2 = 4/3, but here we prefer to keep it arbitrary.
2Potentials that contain non-analytic terms at order higher than O(λ2) have been considered in the

literature. The analysis below applies to such more general potentials as well.
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Moreover, requiring an asymptotically linear glueball spectrum, m2
n ∼ n, uniquely picks

out Q = 2/3, P = 1/2. Certain conditions for the strongly coupled limit of Z(λ) are also

necessary in some cases [10]. Here we will keep the functions V (λ) and Z(λ) completely

general, however, assuming only that3

V (λ) =
d(d − 1)

ℓ2

(
1 + V1λ + V2λ

2
)

+ Ṽ (λ), V1 6= 0, Ṽ (λ) = o(λ2), as λ→ 0. (1.4)

In particular, we allow Ṽ (λ) to contain non analytic terms provided they are subleading

compared to λ2 as λ→ 0.

Given the functions V (λ) and Z(λ), the Yang-Mills vacuum is described by extrema

of (1.1) with four-dimensional Poincaré invariance. Such solutions are domain walls of

the form

ds2 = dr2 + e2A(r)dxidxi, λ = λ(r), χ = χ(r). (1.5)

Such backgrounds are extrema of (1.1) provided they satisfy

Ȧ2 − 1

d(d− 1)

(
ξ2λ−2λ̇2 + Z(λ)χ̇2 + V (λ)

)
= 0,

Ä + dȦ2 − 1

d− 1
V (λ) = 0,

2ξ2λ−2
(
λ̈ + dȦλ̇− λ−1λ̇2

)
− Z(λ)χ̇2 + V ′(λ) = 0,

Z(λ)χ̈ + Z ′(λ)λ̇χ̇ + dZ(λ)Ȧχ̇ = 0, (1.6)

where ˙ denotes differentiation w.r.t. the radial coordinate r. These equations are automat-

ically solved provided A, λ and χ satisfy the first order flow equations

Ȧ = − 1

d− 1
W (λ, χ), λ̇ = ξ−2λ2 ∂W (λ, χ)

∂λ
, χ̇ = Z−1(λ)

∂W (λ, χ)

∂χ
, (1.7)

where the ‘superpotential’ W (λ, χ) is determined by the scalar potential V (λ) and the

function Z(λ) via the equation

V (λ) = −ξ−2λ2

(
∂W

∂λ

)2

− Z−1(λ)

(
∂W

∂χ

)2

+
d

d− 1
W 2. (1.8)

In particular, any solution W (λ, χ) of (1.8) uniquely specifies a Yang-Mills vacuum. Notice

that the last equation in (1.6) can be integrated exactly to obtain

χ̇ = cZ−1(λ)e−dA, (1.9)

where c is an integration constant. From the last equation in (1.7) then follows that

∂W (λ, χ)

∂χ
= ce−dA. (1.10)

3We will consider an arbitrary boundary dimension d from now on, in order to maintain a wider appli-

cability of our results.
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As we will see later, this result has very significant consequences for the form of the coun-

terterms required to make the variational problem for the action (1.1) well defined. As far

as possible vacuum solutions are concerned, this relation means that there are two broad

classes of vacua depending on whether c is zero or not. Namely, if c = 0, then W is inde-

pendent of the axion and so the axion is just a constant in the background, corresponding

to the value of the instanton angle θY M . Vacua with c 6= 0 allow for a non-trivial axion

profile, corresponding to giving a VEV to the operator Tr (FF̃ ). In particular, using the

result (3.44) below, and assuming Oχ = Tr (FF̃ ), we obtain 〈Tr (FF̃ )〉 = c/κ2. Addi-

tionally, generic vacua are classified according to whether the operator dual to the dilaton

acquires a vacuum expectation value. As follows from the exact one-point function (3.40),

this happens iff the UV expansion of the superpotential W (λ, χ) contains a non-zero term

of the form e−dA ∼ λdν exp(−d/b0λ), where

ν =
2ξ2

d− 1
− 1

d
− (d− 1)V2

ξ2b2
0

. (1.11)

Poincaré invariant vacua are, therefore, parameterized by three constants: the dilaton and

axion VEVs, as well as the instanton angle θY M . As we shall see, the source of the dilaton

is a gauge freedom and its value can be thought of as the energy scale. In particular, it’s

value is not a physical observable and does not correspond to a coordinate in the moduli

space of vacua. This is in good agreement with what one expects from a holographic model

describing pure Yang-Mills theory.

The rest of the paper is organized as follows. In section 2 we define the general

dilaton-axion gravity theory we will consider and we formulate its dynamics in terms of

a radial Hamiltonian. We then develop a systematic iterative procedure for solving the

Hamilton-Jacobi equation in a derivative expansion for this general class of theories. Us-

ing this procedure the full boundary term that makes the variational problem at infinity

well defined is derived for spacetime dimension up to and including five dimensions. This

result, summarized in tables 2 and 3, is the main result of the paper. In section 3 we apply

this general result to IHQCD. After writing down explicitly the boundary counterterms for

IHQCD, we systematically derive the generalized Fefferman-Graham asymptotic expan-

sions and give explicit expressions for the exact renormalized one-point functions in the

presence of sources for the stress tensor, dilaton and axion operators. These are given in

equations (3.41), (3.40) and (3.44) respectively. The section ends with a detailed discussion

of the asymptotic bulk diffeomorphisms that preserve the form of the asymptotic expan-

sions, leading to a proof of the holographic Ward identities. Some concluding remarks

follow in section 4, while some technical details of the main calculation are presented in

appendix A. Finally, in appendix B we apply the main result to the case of a constant

dilaton potential, and derive general expressions for the exact one-point functions in the

presence of sources for the fully coupled stress tensor-dilaton-axion sector of N = 4 super

Yang Mills in four dimensions. To our knowledge this is the first time that the general

form of these one-point functions has been derived.
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2 Boundary term for generic dilaton-axion gravity

Since the action (1.1) already contains essentially arbitrary functions of the dilaton, deriving

the appropriate boundary term that makes its variational problem well defined is not much

easier than considering instead the slightly more general action

S = − 1

2κ2

(�
M

dd+1x
√

g (R[g]− ∂µϕ∂µϕ− Z(ϕ)∂µχ∂µχ + V (ϕ)) +

�
∂M

ddx
√

γ2K

)
,

(2.1)

where the spacetime dimension is taken to be arbitrary and we have introduced a canonical

dilaton field, ϕ, related to the dilaton λ in (1.1) by ϕ = ξ log λ. Moreover, we have added

the standard Gibbons-Hawking term [12] and the constant κ is related to Newton’s constant

in d + 1 dimensions by κ2 = 8πGd+1.

Note that this action contains as special cases a very large class of theories considered

in the literature. Apart, from IHQCD, other special cases include the standard dilaton-

axion of N = 4 super Yang-Mills,4 as well as non-conformal branes [3, 4]. By deriving the

appropriate boundary term for the action (2.1), therefore, we automatically carry out the

holographic renormalization of all these theories, whether asymptotically AdS or not, and

without the need of any field redefinition. Explicit results for the case of non-conformal

branes will be presented elsewhere [15].

2.1 Hamiltonian formulation of the variational problem

The variational problem at infinity for the action (2.1) is not well defined as it stands [7,

8]. For the case of asymptotically AdS gravity it was first shown in [16] that a certain

asymptotic solution of the radial Hamilton-Jacobi equation renders the on-shell action

finite. It was later shown [17] that the boundary term obtained by solving the radial

Hamilton-Jacobi solution is the same as the one obtained via the standard method of

holographic renormalization [16, 18–24]. In [8] it was pointed out that the boundary term

required to make the on-shell action finite is in fact the same boundary term required

to render the variational problem at infinity well defined, while in [7] it was pointed out

that this conclusion holds more generally, not just for non-asymptotically AdS gravity,

but also for non-gravitational variational problems with a boundary at infinity, provided

the variations are confined within a space of asymptotic solutions carrying a well defined

symplectic form. Moreover, this boundary term always corresponds to a solution of the

radial Hamilton-Jacobi equation. In practical terms this means that the leading solution of

the Hamilton-Jacobi equation determined from the leading asymptotic form of the solutions

must not contain transverse derivatives [7]. If this is not the case, it simply means that

the space of asymptotic solutions corresponding to the chosen leading asymptotics is not

well defined and it does not carry a suitable symplectic form. In such cases, one must

first perform some kind of ‘Kaluza-Klein reduction’ to trivialize the transverse derivatives

appearing in the leading radial asymptotics, derive an effective action for the KK fields,

and then solve the radial Hamilton-Jacobi equation for this effective action of the KK

4See appendix B for the explicit results in this case and [13, 14], where these results have been re-

cently used.
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fields [7]. The condition that the leading asymptotic form of the solutions should give

rise to a solution of the Hamilton-Jacobi equation whose leading asymptotic form does

not contain any transverse derivatives is automatically satisfied in the case of IHQCD,

asymptotically AdS gravity, or non-conformal branes and we will assume that it is the case

in the analysis below.

To formulate the variational problem we start by writing the metric in an ADM de-

composition [25], but with Hamiltonian time being replaced by the radial coordinate, r,

emanating from the boundary at infinity. Namely, we write

ds2 = (N2 + NiN
i)dr2 + 2Nidrdxi + γijdxidxj, (2.2)

where N and Ni are respectively the lapse and shift functions, and γij is the induced

metric on the hypersurfaces Σr of constant radial coordinate r. The metric gµν is therefore

replaced in the Hamiltonian description by the three fields {N,Ni, γij} on Σr. In terms of

these variables the Ricci scalar takes the form

R[g] = R[γ] + K2 −KijK
ij +∇µ(−2Knµ + nρ∇ρn

µ), (2.3)

where R[γ] is the Ricci scalar of the induced metric γij , the extrinsic curvature, Kij , of the

hypersurface Σr is given by

Kij =
1

2N
(γ̇ij −DiNj −DjNi) , (2.4)

and Di is the covariant derivative w.r.t. the induced metric γij . Moreover, K = γijKij and

nµ =
(
1/N,−N i/N

)
, is the outward unit normal vector to Σr. The total derivative term

in this decomposition of the bulk Ricci scalar is an indication of the need for the Gibbons-

Hawking term. Evaluating this term on Σr we see that it gives a contribution which is

precisely canceled by the Gibbons-Hawking term. We therefore arrive at a Lagrangian

description of the dynamics of the induced fields {N,Ni, γij} on Σr, namely

2κ2L = −
�

Σr

ddx
√

γN
(
R[γ] + K2 −Ki

jK
j
i

)

+

�
Σr

ddx
√

γN

{
1

N2
(ϕ̇2 + Z(ϕ)χ̇2)− 2N i

N2
(ϕ̇∂iϕ + Z(ϕ)χ̇∂iχ)

+

(
γij +

N iN j

N2

)
(∂iϕ∂jϕ + Z(ϕ)∂iχ∂jχ)− V (ϕ)

}
. (2.5)

Note that this Lagrangian involves no kinetic terms for the fields N and Ni, which are

therefore Lagrange multipliers, leading to constraints. The canonical momenta conjugate

to γij, ϕ and χ are now obtained respectively as

πij ≡ δL

δγ̇ij
= − 1

2κ2

√
γ
(
Kγij −Kij

)
,

πϕ ≡
δL

δϕ̇
=

1

κ2N

√
γ
(
ϕ̇−N i∂iϕ

)
,

πχ ≡
δL

δχ̇
=

1

κ2N

√
γZ(ϕ)

(
χ̇−N i∂iχ

)
, (2.6)
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while the momenta conjugate to N and Ni vanish identically. The Hamiltonian is given by

H =

�
Σr

ddx
(
πij γ̇ij + πϕϕ̇ + πχχ̇

)
− L =

�
Σr

ddx
(
NH+ NiHi

)
, (2.7)

where

H = 2κ2γ− 1
2

(
πi

jπ
j
i −

1

d− 1
π2 +

1

4
π2

ϕ +
1

4
Z−1(ϕ)π2

χ

)

+
1

2κ2

√
γ
(
R[γ]− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂iχ + V (ϕ)

)
,

Hi = −2Djπ
ij + πϕ∂iϕ + πχ∂iχ. (2.8)

Hamilton’s equations for the fields N and Ni lead respectively to the Hamiltonian and

momentum constraints

H = 0, Hi = 0. (2.9)

Moreover, the symplectic form is given by

Ω =

�
Σr

ddx
(
δπij ∧ δγij + δπϕ ∧ δϕ + δπχ ∧ δχ

)
, (2.10)

and it is independent of the value of the radial coordinate r [26].

The variational problem for the action (2.1) can now be formulated in a regularized

space, Mro , whose boundary is defined as the surface Σro for some fixed ro. Provided ro

is sufficiently large, Σro is diffeomorphic to the boundary ∂M at infinity. Adding then a

generic boundary term, Sb, to the action (2.1) defined on Mro and considering a generic

variation we obtain [7]

δ(S + Sb) =

�
Mro

dd+1x(EOMs) + (L + Ṡb)
∣∣∣
ro

δro (2.11)

+

�
Σro

ddx

((
πij +

δSb

δγij

)
δγij +

(
πϕ +

δSb

δϕ

)
δϕ +

(
πχ +

δSb

δχ

)
δχ

)
,

where the integrand of the integral over the bulk ofMro is proportional to the equations of

motion. In order for the variational problem at ro →∞ to be well defined with boundary

conditions imposed on the induced fields γij , ϕ and χ, i.e. for a generic variation of the

action with such boundary conditions to imply the equations of motion, one must demand

that [7]

(L + Ṡb)
∣∣∣
ro

ro→∞−−−−→ 0. (2.12)

The variational problem is then defined by considering variations of γij , ϕ and χ within

the space of generic asymptotic solutions of the equations of motion so that

Sb|ro
= − S|ro

, (2.13)

where S is Hamilton’s principal functional, i.e. a solution of the Hamilton-Jacobi equation

where the values of the induced fields γij , ϕ and χ on Σro are totally arbitrary. It follows

from (2.11) that

πij
∣∣
ro

=
δS
δγij

∣∣∣∣
ro

, πϕ|ro
=

δS
δϕ

∣∣∣∣
ro

, πχ|ro
=

δS
δχ

∣∣∣∣
ro

, (2.14)

– 8 –
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where S is identified with the on-shell value of the action S on solutions with arbitrary

boundary values for γij, ϕ and χ on Σro. Including the boundary term Sb in these relations

leads to the canonically transformed momenta [7]

Πij
∣∣
ro

=
δ(S + Sb)

δγij

∣∣∣∣
ro

, Πϕ|ro
=

δ(S + Sb)

δϕ

∣∣∣∣
ro

, Πχ|ro
=

δ(S + Sb)

δχ

∣∣∣∣
ro

. (2.15)

In order to determine the boundary term Sb we need to determine the asymptotic form

of Hamilton’s principal functional. In other words we need to solve the Hamilton-Jacobi

equation in a certain asymptotic sense, which we will specify below. The Hamilton-Jacobi

equation can be derived from the following simple argument. Let Sro ≡ S|ro
denote the

on-shell action S with arbitrary boundary values for γij, ϕ and χ on Σro. Then,

Ṡro =
∂Sro

∂ro
+

�
Σro

ddx

(
γ̇ij [γ, ϕ, χ]

δ

δγij
+ ϕ̇[γ, ϕ, χ]

δ

δϕ
+ χ̇[γ, ϕ, χ]

δ

δχ

)
Sro

(2.14)
=

∂Sro

∂ro
+

�
Σro

ddx
(
πij γ̇ij + πϕϕ̇ + πχχ̇

)

=
∂Sro

∂ro
+ H + L, (2.16)

where ∂/∂ro denotes the partial derivative with respect to ro. However, since Sro is the

on-shell action, we must have Ṡro = L and so we conclude that

∂Sr

∂r
+ H = 0. (2.17)

For a generally covariant theory, like supergravity, the Hamiltonian vanishes identically

since it is proportional to the constraints (2.9). It follows that, as a consequence of the

general covariance of the theory, the on-shell action does not depend explicitly on the radial

coordinate, r, but only through the induced fields on the hypersurface Σr. Moreover, we

see that the Hamilton-Jacobi equation in a generally covariant theory is equivalent to the

vanishing of the constraints, i.e.

2κ2γ− 1
2

((
γikγjl −

1

d− 1
γijγkl

)
δSr

δγij

δSr

δγkl
+

1

4

(
δSr

δϕ

)2

+
1

4
Z−1(ϕ)

(
δSr

δχ

)2
)

= − 1

2κ2

√
γ
(
R[γ]− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂iχ + V (ϕ)

)
,

−2Dj

(
δSr

δγij

)
+

(
δSr

δϕ

)
∂iϕ +

(
δSr

δχ

)
∂iχ = 0. (2.18)

The task of the next subsection will be to systematically solve these equations is a certain

asymptotic sense.

2.2 Recursive solution of the Hamilton-Jacobi equation

We now turn to the task of solving the Hamilton-Jacobi equations (2.18) in order to de-

termine the boundary term Sb that makes the variational problem for the action (2.1) at

ro = ∞ well defined. As was argued in [7] and reiterated above, provided the variational
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problem is formulated within a well defined space of asymptotic solutions, the leading form

of the boundary term, obtained as a solution of the Hamilton-Jacobi equation, will contain

no transverse derivatives. It follows that the full solution of the Hamilton-Jacobi equation

that corresponds to the boundary term we seek to determine admits an expansion in trans-

verse derivatives. One can, therefore, try to solve the Hamilton-Jacobi equation by writing

down an ansatz containing all possible terms allowed by general covariance at each order

in derivatives. Although this approach, which was used in, for example, [16] in the case of

asymptotically AdS gravity, generically suffices for simple cases in low spacetime dimension

and for a limited number of fields, it quickly becomes prohibitively inefficient and cum-

bersome. In particular, this approach not only unnecessarily includes terms in the ansatz

that may happen to be absent in the particular theory, but also the number of equations

one obtains for the undetermined functions in the ansatz is greater than the number of

functions to be determined, and so many equations are redundant. Instead, the approach

we will develop here is a systematic recursive procedure for solving the Hamilton-Jacobi

equation, closer in spirit to the recursive method developed in [27]. In particular, the al-

gorithm we will present computes systematically the nth term in the derivative expansion

from lower terms, thus producing only the terms that do appear in the actual solution of

the Hamilton-Jacobi equation.

The basis of our algorithm is the following observation. Let us begin by writing Hamil-

ton’s principal function, Sr, as

Sr =

�
Σr

ddxL(γ, ϕ, χ). (2.19)

From the relations (2.14) then we have

πijδγij + πϕδϕ + πχδχ = δL + ∂iv
i(δγ, δϕ, δχ), (2.20)

for some vector field vi(δγ, δϕ, δχ). Since by construction the solution Sr we are seeking

admits a derivative expansion as r →∞, Sr increasingly approaches a solution of the form

S(0) =
1

κ2

�
Σr

ddx
√

γU(ϕ,χ), (2.21)

for some function U(ϕ,χ). Given the zero order solution (2.21), we can compute corrections

to this action in a systematic expansion in eigenfunctions of the operator5

δγ =

�
ddx2γij

δ

δγij
, (2.22)

5In the case of asymptotically AdS or dS gravity coupled to matter, it was proposed in [17] that one

expands Sr and the corresponding canonical momenta in eigenfunctions of the dilatation operator, δD,

obtained from the relation ∂r =
�

ddx
“

γ̇ij
δ

δγij
+ Σf ḟ δ

δf

”

r→∞

−−−→
1
ℓ
δD, where f denotes generic matter fields.

In that case expanding in eigenfunctions of the dilatation operator is the most efficient recursive method to

solve the Hamilton-Jacobi equation, because it amounts to solving the zero order problem (2.26) and the

one determining the higher derivative terms simultaneously. However, in more general cases the operator

corresponding to the leading asymptotic behavior of ∂r is not very useful in practice since its eigenfunctions

are not simple functions of curvature invariants and matter fields. In most cases it is easier in practice to

first solve the zero order problem (2.26) to determine U(ϕ, χ) and then to expand in eigenfunctions of δγ .

Of course in the case of asymptotically AdS or dS gravity the two approaches produce identical results,

even though the two expansions differ order by order, the difference being that the latter expansion resums

all zero derivative terms into the leading term.
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namely (dropping the subscript r from now on)

S = S(0) + S(2) + S(4) + · · · , (2.23)

where δγS(2n) = (d− 2n)S(2n). It is easy to see that the resulting expansion is a derivative

expansion. Note that the operator (2.22) agrees with the dilatation operator introduced

in [17] in the case of a constant potential, i.e. for the usual dilaton-axion system in conformal

theories. However, the would-be dilatation operator for an arbitrary dilaton potential would

lead to an operator whose eigenfunctions are highly non-trivial and so, from a practical

point of view, would not serve as a good basis for expanding Hamilton’s principal function.

Moreover, an expansion in eigenfunctions of the operator (2.22) has the advantage of leading

to algebraic in the induced metric γij equations for determining the terms S(2n), which is

the fundamental ingredient in our algorithm.

Let us see how this works. Applying the general identity (2.20) to the variation δγ

we obtain

2π(2n) = (d− 2n)L(2n) + ∂iv
i
(2n). (2.24)

Since L is defined up to a total derivative, we can absorb the last term in this identity into

L(2n) such that

2π(2n) = (d− 2n)L(2n). (2.25)

The significance of this relation will become clear shortly, when we write down the equation

determining L(2n). Since (2.25) holds only for a certain choice of total derivative terms in

L(2n), in principle we should keep track of total derivative terms as well. However, as

we shall see, this will not be necessary in our recursive procedure. In particular, we will

determine L(2n) at each order up to total derivative terms. The canonical momenta at this

order can then be obtained by differentiating S(2n) =
�

ddxL(2n). Since total derivative

terms do not influence the canonical momenta, we will still get the correct expressions for

the canonical momenta.

Inserting the leading term (2.21) of the above expansion in to the Hamilton-Jacobi

equation (2.18) we find that the function U(ϕ,χ) satisfies the equation

(∂ϕU)2 + Z−1(ϕ)(∂χU)2 − d

d− 1
U2 + V (ϕ) = 0. (2.26)

However, using the leading term (2.21) in the relations (2.14) and identifying the momenta

from the expressions (2.6) we find that to leading order the induced metric takes the form6

γij = e2Aḡ(0)ij(x), (2.27)

where ḡ(0)ij(x) is an arbitrary metric on the boundary and the fields A, ϕ and χ satisfy the

flow equations (1.7), but with W replaced with U . But then, these first order equations in

combination with (2.26) imply the second order equations (1.6). As we have seen above,

the second order equation for the axion is integrable, giving in this case

∂U(ϕ,χ)

∂χ
= c̃e−dA, (2.28)

6We gauge-fix the lapse and shift functions to N = 1 and Ni = 0.
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which is the analogue of (1.10). We therefore see that any χ dependence in U leads to a

finite contribution in Hamilton’s principal function S and hence we can set the integration

constant c̃ = 0. We conclude that the function U(ϕ) required to make the variational

problem well defined can be taken, without loss of generality, to be independent of the

axion χ. As we will see shortly, this leads to a significant simplification of the analysis to

determine the required higher derivative terms in S.

In order to determine the leading solution (2.21) of the Hamilton-Jacobi equation,

therefore, one needs to solve the reduced equation

(∂ϕU)2 − d

d− 1
U2 + V (ϕ) = 0. (2.29)

For an arbitrary potential this equation can be transformed into an Abel’s equation of the

first kind [17], which is generically non-integrable. However, we need not find the general

solution of this equation. Any solution of this equation that ensures that ϕ has the desired

general asymptotics via the relation

ϕ̇ = ±
√

d

d− 1
U2(ϕ)− V (ϕ), (2.30)

suffices. In particular, if U is such a solution and it is not isolated in the space of solutions,7

then it is easy to see that any solution in the vicinity of U is of the form U + ǫ∆U , where

ǫ is an infinitesimal parameter and ∆U = O(exp(−dA)). Hence, the difference between

two such solutions only contributes a finite term in S(0), and it is therefore irrelevant. The

reason for restricting this argument to the vicinity of the original solution U is that there

exist solutions at infinite parametric distance from U that change the leading asymptotic

behavior of ϕ. Such solutions are excluded by the requirement that ϕ has the correct

asymptotics.

Now that we have determined that U(ϕ) is independent of the axion, inserting the

above expansion of Hamilton’s principal function in the Hamiltonian constraint and match-

ing terms of equal δγ eigenvalue we obtain for the higher order terms

U ′(ϕ)
δ

δϕ

�
ddxL(2n) −

(
d− 2n

d− 1

)
U(ϕ)L(2n) = R(2n), n > 0, (2.31)

where

R(2) = − 1

2κ2

√
γ
(
R[γ]− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂iχ

)
,

R(2n) = −2κ2γ− 1
2

n−1∑

m=1

(
π(2m)

i
jπ(2(n−m))

j
i −

1

d− 1
π(2m)π(2(n−m)) (2.32)

+
1

4
πϕ(2m)πϕ(2(n−m)) +

1

4
Z−1(ϕ)πχ(2m)πχ(2(n−m))

)
, n > 1.

Importantly, these are linear equations and only involve a derivative w.r.t. the dilaton, ϕ,

and not the induced metric γij or the axion. The absence of a derivative w.r.t. the induced

7See appendix B for an example where this happens.
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metric is due to the relation (2.25), while the absence of a derivative w.r.t. the axion is

because we have shown that U only depends on the dilaton. We will now solve these

equations up to the order required in order to determine the boundary term Sb for d = 4.

In the analysis below we will take U ′(ϕ) 6= 0, which is guaranteed by the requirement of

a logarithmic running for the dilaton. However, the case of a constant potential V and,

consequently, constant U arises in conformal theories such as N = 4 super Yang-Mills and

so it is interesting on its own right. For completeness we discuss this case in appendix B.

Turning now to the case U ′(ϕ) 6= 0, we notice that the linear equation (2.31) for L(2n),

n > 0, admits the homogeneous solution

Lhom
(2n) = F (2n)[γ, χ] exp

((
d− 2n

d− 1

)� ϕ dϕ̄

U ′(ϕ̄)
U(ϕ̄)

)
, (2.33)

where F (2n)[γ, χ] is a covariant function of the induced metric and the axion of weight

d − 2n. However, this solution contributes only to finite local counterterms and can be

ignored. To see this notice that the leading order solution (2.21) implies via the Hamilton-

Jacobi relations (2.14) that the induced metric takes to leading order the form (2.27) with

A = − 1

d− 1

� ϕ dϕ̄

U ′(ϕ̄)
U(ϕ̄). (2.34)

Now, by construction, F (2n)[γ, χ] has weight d− 2n and so

Lhom
(2n) ∼ e(d−2n)A × e−(d−2n)A = finite. (2.35)

We are, therefore, only interested in the inhomogeneous solution of (2.31). In other words,

formally,

L(2n) = e−(d−2n)A(ϕ)

� ϕ dϕ̄

U ′(ϕ̄)
e(d−2n)A(ϕ̄)R(2n)(ϕ̄). (2.36)

This integral is well defined if R(2n) does not involve derivatives of the dilaton, ϕ, but it

requires some caution when it does. In general, we can write more precisely

L(2n) = e−(d−2n)A(ϕ)F (2n), (2.37)

where F (2n) satisfies

δϕ

U ′(ϕ)
e(d−2n)A(ϕ)R(2n)(ϕ) = δϕF (2n) + e(d−2n)A(ϕ)∂iv(2n)

i(ϕ, δϕ), (2.38)

for some vector field v(2n)
i(ϕ, δϕ). In table 1 we have listed the local functional F (2n)(ϕ)

for a number of generic source terms R(2n)(ϕ) that we will need for our calculation. A

detailed derivation of the formulas given in table 1 is provided for the reader’s convenience

in appendix A. Both in table 1 and in appendix A we make extensive use of the short-

hand notation  ϕ

n,m
≡
(
A′)m e−(d−2n)A

� ϕ dϕ̄

U ′ e
(d−2n)A

(
A′)−m

, (2.39)

where A(ϕ) is given by (2.34).

– 13 –



J
H
E
P
0
8
(
2
0
1
1
)
1
1
9

R(2n) e−(d−2n)AF (2n)

r1m(ϕ)ti1i2...im∂i1ϕ∂i2ϕ . . . ∂im
ϕ

� ϕ

n,m
r1m(ϕ̄)ti1i2...im∂i1ϕ∂i2ϕ . . . ∂im

ϕ

r2(ϕ)tijDiDjϕ
� ϕ

n,1 r2(ϕ̄)tijDiDjϕ

−
� ϕ

n,2
U ′A′∂2

ϕ̄

(
1
A′

) � ϕ̄

n,1
r2(ϕ̃)tij∂iϕ∂jϕ(

r122(ϕ)tijkl
1 + s122(ϕ)tijkl

2

)
∂iϕ∂jϕDkDlϕ

� ϕ

n,3 s122(ϕ̄)tijkl
2 ∂iϕ∂jϕDkDlϕ(

r22(ϕ)tijkl
1 + s22(ϕ)tijkl

2

)
DiDjϕDkDlϕ

(� ϕ

n,2
r22(ϕ̄)tijkl

1 +
� ϕ

n,2
s22(ϕ̄)tijkl

2

)
DiDjϕDkDlϕ

−2
� ϕ

n,3
U ′A′∂2

ϕ̄

(
1

A′

) � ϕ̄

n,2
s22(ϕ̃)tijkl

2 ∂iϕ∂jϕDkDlϕ

Table 1. The result of the functional integration described by (2.38) for various source terms.

Here, ti1i2...im and tij are arbitrary totally symmetric tensors independent of ϕ, while tijkl
1 =

1
3

(
γikγjl + γilγjk + γijγkl

)
, tijkl

2 = 1
3

(
γikγjl + γilγjk − 2γijγkl

)
. Moreover, F(2n) is given up to

terms of the form e(d−2n)ADiU i, for some vector field U i. Since L(2n) is related to F(2n) as in (2.37),

U i corresponds to a total derivative term in L(2n) and so we need not determine this term explicitly.

Note that the source term r122 only contributes to U i and so it can be ignored. A detailed derivation

of these results is given in appendix A.

R(2n)

�
−−−−−−−−→ L(2n)

δ−−−−−−−→ {π(2n)}
y

{π(2n+2)} δ←−−−−−−− L(2n+2)

�
←−−−−−−−− R(2n+2)

y

R(2n+4)

�
−−−−−−−−→ L(2n+4) . . .

Figure 1. A schematic illustration of the algorithm used to determine Hamilton’s principal function

iteratively. Here, the operators
�

and δ stand respectively for the functional integration defined by

the formula in (2.38) and for functional differentiation with respect to the induced fields.

The integration formula (2.38) allows us to develop an algorithmic procedure for evalu-

ating Hamilton’s principal function, S, iteratively. Namely, given the source term of equa-

tion (2.31) at order n, (2.38) is used to obtain L(2n) up to an irrelevant total derivative

term. Differentiating this with respect to the various induced fields gives the corresponding

momenta at that order. Finally, using these momenta, as well as those of lower orders, one

determines the source term at order n + 1 via (2.32). The procedure is then repeated to

the desired order. This algorithm is schematically outlined in figure 1. Let us now carry

out this general algorithm to order n = 2, which is sufficient for evaluating the boundary

term for the action (2.1) in d = 4. In general, at each order n the source term, R(2n) and

the corresponding inhomogeneous solution, L(2n), of the functional equation (2.31) can be
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I T I
1 cI

1(ϕ) PI
1 (ϕ)

1 R 1
� ϕ
1,0 1 ≡ −2Ξ(ϕ)

2 ∂iϕ∂iϕ −1
� ϕ
1,2(−1) ≡ −M(ϕ)

3 ∂iχ∂iχ −Z(ϕ)
� ϕ
1,0(−Z(ϕ̄)) ≡ −Θ(ϕ)

Table 2. Summary of the source terms (2.40) and the corresponding solution (2.41) of the Hamilton-

Jacobi equation at order n = 1. The source term is determined iteratively as in (2.32), while L(2n)

are determined by solving the linear equations (2.31) via the integration procedure described in

the text.

written respectively in the form

R(2n) = − 1

2κ2

√
γ

Nn∑

I=1

cI
n(ϕ)T I

n , (2.40)

and

L(2n) = − 1

2κ2

√
γ

Nn∑

I=1

PI
n(ϕ)T I

n , (2.41)

where cI
n(ϕ) and PI

n(ϕ) are scalar functions of ϕ and T I
n are quantities involving fields other

than ϕ, as well as derivatives of ϕ. The number Nn is the number of such quantities at

each order n. For n = 1 the source R(2) is given in (2.32). Applying the results in table 1

to this sources we obtain L(2). The result is summarized in table 2.

In order to move to the next order we first need to evaluate the canonical momenta at

order n = 1 by differentiating L(2) with respect ot the induced fields. After a little algebra

we obtain:

π(2)
ij = − 1

κ2

√
γ

(
ΞRij − Ξ′DiDjϕ +

1

2
(M − 2Ξ′′)∂iϕ∂jϕ +

1

2
Θ∂iχ∂jχ

−1

2
γij

(
ΞR− 2Ξ′

�γϕ +
1

2
(M − 4Ξ′′)∂kϕ∂kϕ +

1

2
Θ∂kχ∂kχ

))
,

πϕ(2) = − 1

κ2

√
γ

(
1

2
M ′∂iϕ∂iϕ + M�γϕ− 1

2
Θ′∂iχ∂iχ− Ξ′R

)
,

πχ(2) = − 1

κ2

√
γ
(
Θ�γχ + Θ′∂iϕ∂iχ

)
. (2.42)

Inserting these in the expression for R(4) in (2.32) results in an explicit expression for the

source term at order n = 2. This is a rather complicated source, involving 20 different

terms, and can be read out from the first three columns of table 3. Using the results of

table 1 we then obtain the fourth column in table 3, giving L(4). This table is the main

result of this paper providing together with table 2, the boundary term necessary to make

the variational problem of a generic action of the form (2.1) well defined in any dimension

up to and including d + 1 = 5.

Before we apply this general result to IHQCD, a technical comment is due. The

boundary terms listed in tables 2 and 3 generically have poles at d = 2 or d = 4. This
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happens whenever there is a conformal anomaly, or, in terms of the bulk language, whenever

the boundary term required to make the variational problem well defined breaks the bulk

diffeomorphisms corresponding to translations in the radial coordinate. The way to handle

these poles is to relate the radial cut-off, r0, to the parameter d, as8 r0 = 1/(d − d∗),

where d∗ is the dimension of the boundary. An example of this issue arises in the case of

a constant dilaton potential, discussed in appendix B.

3 Application to IHQCD

The results presented in the previous section are applicable to any action of the form (2.1).

In particular, tables 2 and 3 provide the general boundary term that renders the varia-

tional problem of any action of the form (2.1) well posed for boundary dimension up to

and including d = 4. However, additional assumptions that enter into specific models often

lead to significant simplification of this boundary term. In this section we will apply these

general results to the specific problem of IHQCD [10] described in the Introduction. The

significance of this boundary term will be demonstrated by deriving asymptotic expansions

analogous to the Fefferman-Graham expansion for asymptotically AdS gravity [6], provid-

ing general expressions for the one-point functions of the dual operators in terms of the

coefficients of these expansions, and finally giving the correct holographic Ward identities

for IHQCD.

In deriving the boundary term in tables 2 and 3 we have assumed that the leading

asymptotics of the induced fields follows from a leading solution (2.21) of the Hamilton-

Jacobi equation which does not involve transverse derivatives. However, no specific asymp-

totics was assumed. Taking into account the leading asymptotic form of the induced fields

of the IHQCD model allows for various simplifications of the result of the previous section.

To see what simplifications occur let us start by writing ϕ = ξ log λ, for some non-zero

constant ξ. Then, by abuse of notation, we will correspondingly write U(λ), A(λ), etc. as

functions of λ. As we have argued above, U is a function of the dilaton λ only and not of

the axion. Moreover, it is a solution of equation (2.26), which now becomes

d

d− 1
U2 − ξ−2λ2

(
∂U

∂λ

)2

= V (λ). (3.1)

At this point we need to invoke some information about the asymptotics. First, recall

that we want to consider potentials of the form (1.4) as λ → 0. Moreover, U(λ) defines

the leading form of the metric and dilaton asymptotics via the flow equations (these are

the same as (1.7) but with W replaced by U , and follow from combining the relations (2.6)

8The radial cut-off r0 and the boundary dimension d are arbitrary parameters in the radial Hamilto-

nian formalism. However, the fact that this formalism, without relying on any additional input from the

asymptotic expansions, can handle conformal anomalies in d∗ dimensions by relating the radial cut-off to

the parameter d suggests that a radial cut-off regularization corresponds to dimensional regularization in

the dual field theory. Taken at face value, this identification has profound consequences for the physical

significance of the holographic direction.
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I T
I
2 cI

2(ϕ) P
I
2 (ϕ)

1 RijRij 4Ξ2
� ϕ

2,0
4Ξ2

2 R2 Ξ′2
−

d
d−1

Ξ2
� ϕ

2,0
(Ξ′2

−
d

d−1
Ξ2)

3 DiDjϕDiDjϕ 4Ξ′2 4
� ϕ

2,2
Ξ′2

4 DiDjϕ∂iϕ∂jϕ −4Ξ′ (M − 2Ξ′′) 2
3

� ϕ

2,3
(4Ξ′(3Ξ′′

− M) − MM ′
− 2U ′A′∂2

ϕ̄

`

1
A′

´ � ϕ̄

2,2
(6Ξ′2

− M2))

5 �γϕ∂iϕ∂iϕ MM ′ + 2Ξ′ (M − 4Ξ′′) −
2
3

� ϕ

2,3
(4Ξ′(3Ξ′′

− M) − MM ′
− 2U ′A′∂2

ϕ̄

`

1
A′

´ � ϕ̄

2,2
(6Ξ′2

− M2))

6 (�γϕ)2 M2
− 4Ξ′2

� ϕ

2,2

`

M2
− 4Ξ′2

´

7
`

∂iϕ∂iϕ
´2 1

4
M ′2 + (3d−4)

4(d−1)
M2

− 2MΞ′′
� ϕ

2,4
( 1
4
M ′2 + (3d−4)

4(d−1)
M2

− 2MΞ′′)

8
`

∂iχ∂iχ
´2 1

4
Θ′2 + (3d−4)

4(d−1)
Θ2 1

4

� ϕ

2,0
(Θ′2 + (3d−4)

(d−1)
Θ2)

9 RijDiDjϕ −8ΞΞ′
−8

� ϕ

2,1
ΞΞ′

10 Rij∂iϕ∂jϕ 4Ξ (M − 2Ξ′′) 4
� ϕ

2,2

“

Ξ(M − 2Ξ′′) + 2U ′A′∂2
ϕ̄

`

1
A′

´ � ϕ̄

2,1
ΞΞ′

”

11 R�γϕ −2Ξ′ (M − 2Ξ) −2
� ϕ

2,1
Ξ′ (M − 2Ξ)

12 R∂iϕ∂iϕ −Ξ′M ′
−

d
d−1

ΞM + 4ΞΞ′′
� ϕ

2,2
( − Ξ′M ′

−
d

d−1
ΞM + 4ΞΞ′′ + 2U ′A′∂2

ϕ̄

`

1
A′

´ � ϕ̄

2,1
Ξ′(M − 2Ξ))

13 Rij∂iχ∂jχ 4ΞΘ
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and (2.14) for the canonical momenta)

Ȧ = − 1

d− 1
U(λ), λ̇ = ξ−2λ2 ∂U(λ)

∂λ
. (3.2)

The leading metric and dilaton asymptotics adopted in the model of IHQCD is [10]

Ȧ ∼ ℓ−1, λ̇ ∼ −b0ℓ
−1λ2 + b1ℓ

−1λ3, as λ→ 0 (3.3)

where the constants b0 and b1 were argued in [10] to be related respectively to the one and

two-loop perturbative beta function coefficients. According to that argument, subleading

corrections to the asymptotic form of the dilaton correspond to higher loop coefficients

in the perturbative beta function, which are scheme dependent. In that sense, the terms

in (3.3) are universal in the model of IHQCD, and any dilaton potential V (λ) chosen

must be such that it is compatible with this leading asymptotics in the UV, while sub-

leading terms in the UV expansion of the potential can differ for different choices of the

dilaton potential.

One should keep in mind, however, that the beta function of any operator whose cou-

pling transforms inhomogeneously under scale transformations is scheme dependent and,

therefore, not a physical observable. In other words, the beta function of any operator that

acquires anomalous dimension is scheme dependent. For such operators the scaling dimen-

sion γO is not constant along the RG flow. Only the value of this scaling dimension at the

fixed points is a physical observable. Nevertheless, the combination βO ·O(x) is a physical

observable,9 since this combination appears in the trace of the stress tensor, whose scaling

dimension does not renormalize. As we shall see below from the trace Ward identity, the

bulk dilaton λ should be thought of as the holographic dual to the operator β(λY M )Tr F 2.

Isolating the beta function factor in this operator is a scheme-dependent procedure, but

the product transforms homogeneously under the renormalization group flow. It is pre-

cisely this combination that appears in the trace Ward identity. In fact, this is a generic

mechanism of how one can accommodate operators with running scaling dimensions in a

supergravity setting, thus going beyond the realm of operators with protected dimensions.

In order to ensure that the leading asymptotic behavior of the metric and dilaton is of

the form (3.3) we take the function U(λ) to be of the form

U(λ) = −d− 1

ℓ
− ξ2b0

ℓ
λ +

1

ℓ
U2λ

2 +
1

ℓ
Uαλα + o(λα), α > 2, (3.4)

where b1 = 2ξ−2U2, and we have introduced a term of order λα, α > 2, in order to allow

for potentials with non-integer powers of λ, as were considered e.g. in [11, 28]. However, it

should be emphasized that the full closed form of the function U(λ) is required in order

to construct the necessary boundary term that makes the variational problem well defined.

In particular, to write down explicitly the boundary term one necessarily needs an exact

solution of (3.1). Such an exact solution is of course dependent on the particular choice of

dilaton potential. Since we want to keep the discussion general here, we will not fix the

9We are grateful to Elias Kiritsis for pointing this out to us.

– 18 –



J
H
E
P
0
8
(
2
0
1
1
)
1
1
9

dilaton potential or the function U(λ), beyond the requirement that as λ → 0 it behaves

as in (3.4). Once a dilaton potential is specified, one then will simply need to find an exact

solution of (3.1) that behaves asymptotically as in (3.4) and use it in the expressions below,

all of which are expressed in terms of a generic U(λ). Of course, such a solution will not be

unique since it can be shown [29] that if U0(λ) is such a solution, then there is a continuous

family of deformations of this solution, with the deformation behaving as λdν exp(−d/b0λ)

as λ→ 0, where the value of the exponent ν is given below. However, any member of this

continuous family of solutions is equally good for the purposes of evaluating the boundary

term since any difference arising from this deformation only contributes finite terms to the

boundary term.

3.1 Boundary term for IHQCD

In this section we will make use of the asymptotic form (3.4) of the function U(λ) in order

to simplify the general boundary term derived in the previous section. To this end we

start by noting that, depending on the value of the exponent α, the function A(λ) defined

in (2.34) has the following asymptotic behavior as λ→ 0

eA(λ) =





λ−νe
1

b0λ

(
1− αUα

(α−2)ξ2b20
λα−2 + o

(
λα−2

))
, α < 3,

λ−νe
1

b0λ

(
1− 1

b0

((
2U2
ξ2b0

)2
− U2

d−1 + 3U3
ξ2b0

)
λ + o (λ)

)
, α = 3,

λ−νe
1

b0λ

(
1− 1

b0

((
2U2
ξ2b0

)2
− U2

d−1

)
λ + o (λ)

)
, α > 3,

(3.5)

where ν = ξ2

d−1 + 2U2

ξ2b20
. Using these asymptotic expansions and the integral identity� λ

dλ′λ′µ−2e
ω
λ′ =





− 1
ωe

ω
λ λµ

(∑no

n=0
Γ(n+µ)

Γ(µ)

(
1
ω

)n
λn +O

(
λno+1

))
, ω > 0, ∀no ∈ N,

1
µ−1λµ−1 + const., ω = 0, µ 6= 1,

log λ + const., ω = 0, µ = 1,

(3.6)

we can determine the asymptotic form of all functions listed in tables 2 and 3. These

functions involve integrals of the form λ

n,m
λ∆ ≡ ξ2

(
λA′(λ)

)m
e−(d−2n)A(λ)

� λ dλ̄

λ̄2U ′(λ̄)
e(d−2n)A(λ̄)

(
λ̄A′(λ̄)

)−m
λ̄∆, (3.7)

whose asymptotic form we tabulate in table 4. With these results one can now determine

the asymptotic form of the functions in tables 2 and 3, which we present respectively in

tables 5 and 6. In deriving these asymptotic forms we have made repeated use of the crucial

fact that ∂iλ = O(λ2). This follows from the general asymptotic form of the dilaton λ and

will be derived in the next section.

Note that even though we have listed the leading asymptotic behavior of the order

n = 1 terms in table 5, we actually need the exact closed form expressions of the functions

M(λ), Ξ(λ) and Θ(λ) in the boundary term. The reason is quite obvious. Namely, the
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d− 2n ∆ + m
� λ
n,m λ∆

> 0 any ℓλ∆

d−2n

(
1 +

(
∆+m
d−2n −

ξ2

d−1

)
b0λ +O(λ2)

)

0 6= 0, 1 − ℓλ∆−1

b0(∆−1+m)

(
1 + 1

∆+m

(
(∆− 1 + 2m) 2U2

ξ2b0
+ m ξ2b0

d−1

)
λ +O(λ2)

)

0 1 − ℓλ∆−1

b0

(
log λ +O(λ0)

)

0 0 ℓλ∆−1

b0

(
1−

(
2U2
ξ2b0

+ ∆b0ν
)

λ log λ +O(λ)
)

Table 4. The asymptotic form of the integral (3.7) for a function U(λ) that behaves as in (3.4)

as λ→ 0.

I T I
1 PI

1 (λ)

1 R −2Ξ(λ) = ℓ
d−2

(
1− ξ2b0

d−1 λ +O(λ2)
)

2 ξ2λ−2∂iλ∂iλ −M(λ) = − ℓ
d−2

(
1 +

(
2

d−2 −
ξ2

d−1

)
b0λ +O(λ2)

)

3 ∂iχ∂iχ −Θ(λ) = − ℓ
d−2

(
M3

plN
2
c

)−1 (
Z0 +

(
Z1 − ξ2b0

d−1 Z0

)
λ +O(λ2)

)

Table 5. The leading form of the solution (2.41) of the Hamilton-Jacobi equation at order n = 1 for

IHQCD. The third column gives the asymptotic form of the terms in the fourth column of table 2.

expansion of the solution of the Hamilton-Jacobi equation in eigenfunctions of the operator

δγ , i.e. the derivative expansion, is an expansion in powers of e−2A ∼ λ2ν exp(−2/b0λ). This

expansion, therefore, is non-perturbative in λ. However, at each order in the derivative

expansion the boundary term contains an infinite expansion in powers of λ. In other words,

the expansion of the boundary term is a double expansion.10 Clearly, at orders n = 0 and

n = 1 in the derivative expansion we must keep the entire perturbative expansions in λ,

since there are divergences coming from any power of λ no matter how large. This is the

reason why the full closed form expressions for U(λ) at order n = 0 and of M(λ), Ξ(λ) and

Θ(λ) at order n = 1 must be kept. At order n = 2 in the derivative expansion, however,

this is no longer necessary. Indeed, for d = 4 the factor e4A coming from the volume

element
√

γ exactly cancels the factor e−4A coming from the four-derivative terms. Hence,

the divergences at order n = 2 are only power-like or logarithmic in λ. The first few terms

of the asymptotic form of the boundary terms listed in table 6, therefore, suffice.

The entire boundary term that renders the variational problem for IHQCD well defined,

therefore, takes the form

SIHQCD
b = −

(
S(0) + S(2) + S̃(4)

)

= − 1

κ2

�
d4x
√

γ

(
U(λ) +

1

2
M(λ)ξ2λ−2∂iλ∂iλ + Ξ(λ)R +

1

2
Θ(λ)∂iχ∂iχ

10Generically, there are logarithmic in λ terms as well, but these can be included with the powers in λ

since they do not affect the counting of the derivative expansion.
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+
1

4
a(λ)

(
RijR

ij − 1

3
R2

)
+

1

4
b(λ)

[(
Rij − 1

3
Rγij

)
∂iχ∂jχ−

1

2
(�γχ)2

]

+
1

4
c(λ)

(
∂iχ∂iχ

)2
)

, (3.8)

where we have set d = 4 and introduced functions a(λ), b(λ) and c(λ), which are given by

a(λ) = −ℓ3

2

(
b−1
0 λ−1 + 2ζ log λ + c1

)
,

b(λ) = ℓ3(M3
plN

2
c )−1Z0

(
b−1
0 λ−1 +

(
2ζ − Z1

b0Z0

)
log λ + c2

)
,

c(λ) = −ℓ3

3
(M3

plN
2
c )−2Z2

0

(
b−1
0 λ−1 +

(
2ζ − 2Z1

b0Z0

)
log λ + c3

)
. (3.9)

Here

ζ =
ξ2

3
− U2

ξ2b2
0

. (3.10)

and c1, c2 and c3 are arbitrary constants. The terms they multiply correspond to finite

local counterterms and they reflect the usual scheme dependence. The functional derivative

of each of these three terms w.r.t the induced metric gives a local transverse and traceless

tensor. These three tensors are given in (3.33)–(3.35) below. Moreover, the tilde in the

n = 2 solution, S(4), of the Hamilton-Jacobi equation is there to remind us that this is not

the full solution of the Hamilton-Jacobi equation at order n = 2. Namely, S̃(4) contains

only the local divergent part (plus scheme dependence) of the n = 2 solution. In addition,

there is a finite part, Ŝ(4), that corresponds to the renormalized action and which we have

not determined. Recall that all the homogeneous solutions of the equations in the previous

section were ignored precisely because they contribute only to this finite part, which cannot

be determined from the derivative expansion of the Hamilton-Jacobi equation alone. As

usual, to determine this part one must impose some regularity or boundary condition in

the deep interior of the spacetime.

The form of this boundary term deserves some close inspection. By far the most

remarkable feature is that it is totally covariant. In particular, contrary to the boundary

term (B.12) for the strictly asymptotically locally AdS dilaton-axion system, it does not

break the bulk diffeomorphisms corresponding to shifts of the radial coordinate. A direct

consequence of this fact is that, as we shall show below, the trace of the stress tensor does

not depend explicitly on the sources, but only implicitly through the dilaton one-point

function. In other words, there is no conformal anomaly in IHQCD, although conformal

invariance is broken via the dilaton one-point function. A related observation is that there

are terms proportional to λ−1 ∼ r at order n = 2 in the derivative expansion. These terms

are in fact nothing but the conformal anomaly for a gravity-axion system in asymptotically

AdS space, as can be seen from (B.12) in appendix B. This picture suggests that the

field λ effectively acts as a compensator for scale transformations or shifts of the radial

coordinate.11 Later on we will confirm this by showing that the source of the dilaton λ

11We are grateful to Kostas Skenderis for pointing out this interpretation to us.
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can be removed by a bulk diffeomorphism that induces a Weyl rescaling of the boundary

metric, while the one-point function of the dilaton contains exactly the would-be conformal

anomaly of the gravity-axion system.

3.2 One-point functions and Fefferman-Graham expansions

Having solved the Hamilton-Jacobi equation for IHQCD asymptotically, we are in a position

to derive the full asymptotic behavior of the bulk fields, i.e. the generalized Fefferman-

Graham expansions, without solving asymptotically the second order equations of motion.

Not only is this approach considerably more efficient than directly solving the second

order equations of motion, but it also avoids the necessity of making an ansatz for the

form of the asymptotic expansions. As we shall see, the structure of these asymptotic

expansions can be highly involved and practically impossible to guess a priori. However, the

asymptotic solution of the Hamilton-Jacobi equation that we have obtained above already

contains all information about the form of the asymptotic expansions. Additionally, it

will automatically tell us how the one-point functions, i.e. the renormalized momenta, are

related to the coefficients of the asymptotic expansions.

The key ingredient in deriving the asymptotic expansions from the asymptotic solution

of the Hamilton-Jacobi equation is the first order flow equations

γ̇ij = 4κ2

(
γikγjl −

1

3
γklγij

)
1√
γ

δS
δγkl

,

λ̇ = κ2ξ−2λ2 1√
γ

δS
δλ

,

χ̇ = κ2Z−1(λ)
1√
γ

δS
δχ

, (3.11)

which follow from combining the two expressions for the canonical momenta given in (2.6)

and (2.14). Now, the solution of the Hamilton-Jacobi equation we have determined above

takes the form

S = S(0) + S(2) + S̃(4) + Ŝ(4), (3.12)

where Ŝ(4) is undetermined and remains finite when the radial cut-off is removed, while

the other terms are given in (3.8). Inserting this form of the solution in (3.11) we obtain

the following flow equations.

λ̇ = ξ−2λ2∂λU

+
1

2
λ−1 (2M − λ∂λM) ∂iλ∂iλ−M�γλ +

1

2
ξ−2λ2∂λΘ∂iχ∂iχ + ξ−2λ2∂λΞR

+
1

4ξ2
λ2

(
∂λa

(
RijR

ij − 1

3
R2

)

+∂λb

[
(Rij −

1

3
Rγij)∂

iχ∂jχ− 1

2
(�γχ)2

]
+ ∂λc(∂iχ∂iχ)2

)

+κ2ξ−2λ2 1√
γ

π̂λ(4), (3.13)

χ̇ = −Z−1
(
Θ�γχ + ∂λΘ∂iλ∂iχ

)
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−1

2
Z−1Di

(
b

(
Rij −

1

3
Rγij

)
∂jχ +

1

2
Di(b�γχ) + 2c∂kχ∂kχ∂iχ

)

+κ2Z−1 1√
γ

π̂χ(4), (3.14)

γ̇ij = −2

3
Uγij

−4ΞRij + 4∂λΞDiDjλ + 4

(
∂2

λΞ− 1

2
ξ2λ−2M

)
∂iλ∂jλ− 2Θ∂iχ∂jχ

+
2

3
γij

(
ΞR +

1

2
Mλ−2ξ2∂kλ∂kλ +

1

2
Θ∂kχ∂kχ

)

−2aRikjlR
kl +

2

3
aRRij + 2D(iDk(aRk

j))−�γ(aRij)−
2

3
DiDj(aR)

+γij

(
1

2
a

(
RklR

kl − 1

3
R2

)
− 1

3
DkDl(aRkl) +

1

3
�γ(aR)

)

+
1

2
bγij

(
Rkl −

1

3
Rγkl

)
∂kχ∂lχ− bR(ik∂

kχ∂j)χ +
1

3
bR∂iχ∂jχ− bRikjl∂

kχ∂lχ

+
1

3
bRij∂kχ∂kχ + D(iD

k(b∂kχ∂j)χ)− 1

2
�γ(b∂iχ∂jχ)− 1

6
γijDkDl(b∂

kχ∂lχ)

−1

3
DiDj(b∂kχ∂kχ) +

1

6
γij�γ(b∂kχ∂kχ) + bDiDjχ�γχ−D(i(b�γχDj)χ)

+
1

6
γijDk(b�γχDkχ)− 1

4
γijb(�γχ)2 + c

(
1

2
γij∂kχ∂kχ− 2∂iχ∂jχ

)
∂lχ∂lχ

+4κ2

(
γikγjl −

1

3
γklγij

)
1√
γ

π̂(4)
kl. (3.15)

Here, π̂λ(4), π̂χ(4) and π̂(4)
kl denote respectively the functional derivatives of Ŝ(4) w.r.t.

the dilaton, the axion and the induced metric. Since Ŝ(4) is undetermined, so are these

renormalized momenta, which define the one-point functions of the dual operators [17].

The presence of these terms in the flow equation will lead directly to the identification of

the normalizable modes in the asymptotic expansions.

Although these flow equations look rather complicated, they can actually be solved

in a fairly straightforward way by noticing that the asymptotic solutions will in fact be

two-scale expansions. Namely, there is an expansion in exponentials of r coming from the

derivative expansion. Moreover, at each order in this expansion there is an expansion in

powers and possibly logarithms of r. Since the structure of the expansion in exponentials

of r is pretty clear from the derivative expansion, it is useful to separate the two expansions

by writing explicitly

γij(r, x) = e2r/ℓ
(
γ(0)ij(r, x) + e−2r/ℓγ(2)ij(r, x) + e−4r/ℓγ(4)ij(r, x) + · · ·

)
,

λ(r, x) = λ(0)(r, x) + e−2r/ℓλ(2)(r, x) + e−4r/ℓλ(4)(r, x) + · · · ,

χ(r, x) = χ(0)(r, x) + e−2r/ℓχ(2)(r, x) + e−4r/ℓχ(4)(r, x) + · · · , (3.16)

where the coefficients of the exponentials here are undetermined functions of r, only con-

strained by the requirement that their asymptotic expansions only contain powers and
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logarithms of r, but not exponentials.

Inserting these expansions into the flow equations leads to non-linear first order equa-

tions for the order zero coefficients and linear first order equations for the higher order

coefficients. Namely, for the induced metric we get

γ̇(0)ij + 2

(
1

ℓ
+

1

3
U(λ(0))

)
γ(0)ij = 0, (3.17)

γ̇(2)ij +
2

3
U(λ(0))γ(2)ij =

−4Ξ(λ(0))Rij [γ(0)] + 4Ξ′(λ(0))D(0)iD(0)jλ(0) − 2Θ(λ(0))∂iχ(0)∂jχ(0)

+4
(
Ξ′′(λ(0))− 1

2ξ2λ(0)
−2M(λ(0))

)
∂iλ(0)∂jλ(0)

+2
3γ(0)ij

(
− U ′(λ(0))λ(2) + Ξ(λ(0))R[γ(0)]

+1
2Θ(λ(0))D(0)kχ(0)D(0)

kχ(0) + ξ2

2 λ(0)
−2M(λ(0))D(0)

kλ(0)D(0)kλ(0)

)
, (3.18)

γ̇(4)ij +

(
2

3
U − 2

ℓ

)
γ(4)ij =

−2
3

(
λ(4)U

′ + 1
2λ(2)

2U ′′
)
γ(0)ij − 2

3λ(2)U
′γ(2)ij − 4λ(2)Ξ

′Rij [γ(0)]

−4Ξ
(
D(0)kD(0)(iγ(2)

k
j) − 1

2�(0)γ(2)ij − 1
2D(0)iD(0)jγ(2)

)
+ 4λ(2)Ξ

′′D(0)iD(0)jλ(0)

+4Ξ′
(
D(0)iD(0)jλ(2) +

(
1
2D(0)kγ(2)ij −D(0)(iγ(2)kj)

)
D(0)

kλ(0)

)

+2
(
Ξ′′ − ξ2

2 λ(0)
−2M

)
∂(iλ(0)∂j)λ(2)

+4λ(2)

(
Ξ′′′ − ξ2

2 λ(0)
−2
(
M ′ − 2λ(0)

−1M
))

∂iλ(0)∂jλ(0)

−2λ(2)Θ
′∂iχ(0)∂jχ(0) −Θ∂(iχ(0)∂j)χ(2)

+2
3γ(2)ij

(
ΞR[γ(0)] +

ξ2

2 λ(0)
−2MD(0)kλ(0)D(0)

kλ(0) + 1
2ΘD(0)kχ(0)D(0)

kχ(0)

)

+2
3γ(0)ij

[
λ(2)Ξ

′R[γ(0)] + Ξ
(
D(0)

kD(0)
lγ(2)kl −�(0)γ(2) − γ(2)

klR[γ(0)]kl

)

+ ξ2

2 λ(0)
−2 ×

(
λ(2)(M

′ − 2λ(0)
−1M)D(0)kλ(0)D(0)

kλ(0)

+2MD(0)kλ(0)D(0)
kλ(2) −Mγ(2)

kl∂kλ(0)∂lλ(0)

)

+1
2λ(2)Θ

′D(0)kχ(0)D(0)
kχ(0) + ΘD(0)kχ(0)D(0)

kχ(2) − 1
2Θγ(2)

kl∂kχ(0)∂lχ(0)

]

−2aRikjl[γ(0)]R
kl[γ(0)] +

2
3aR[γ(0)]Rij[γ(0)] + 2D(0)(iD(0)k(aRk

j)[γ(0)])

−�(0)(aRij [γ(0)])− 2
3D(0)iD(0)j(aR[γ(0)])

+γ(0)ij

(
1
2a(Rkl[γ(0)]R

kl[γ(0)]− 1
3R2[γ(0)])− 1

3D(0)kD(0)l(aRkl[γ(0)])

+1
3�(0)(aR[γ(0)])

)
+ 1

2bγ(0)ij

(
Rkl[γ(0)]− 1

3R[γ(0)]γ(0)kl

)
D(0)

kχ(0)D(0)
lχ(0)
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−bR(ik[γ(0)]D(0)
kχ(0)D(0)j)χ(0)+

1
3bR[γ(0)]∂iχ(0)∂jχ(0)−bRikjl[γ(0)]D(0)

kχ(0)D(0)
lχ(0)

+1
3bRij [γ(0)]D(0)kχ(0)D(0)

kχ(0) − 1
6γ(0)ijD(0)kD(0)l(bD(0)

kχ(0)D(0)
lχ(0))

−1
2�(0)(b∂iχ(0)∂jχ(0)) + D(0)(iD(0)

k(b∂kχ(0)∂j)χ(0))

−1
3D(0)iD(0)j(bD(0)kχ(0)D(0)

kχ(0)) + 1
6γ(0)ij�(0)(bD(0)kχ(0)D(0)

kχ(0))

+bD(0)iD(0)jχ(0)�(0)χ(0) −D(0)(i(b�(0)χ(0)D(0)j)χ(0))

+1
6γ(0)ijD(0)k(b�(0)χ(0)D(0)

kχ(0))− 1
4γ(0)ijb(�(0)χ(0))

2

+c
(

1
2γ(0)ijD(0)kχ(0)D(0)

kχ(0) − 2∂iχ(0)∂jχ(0)

)
D(0)lχ(0)D(0)

lχ(0)

+4κ2
(
γ(0)ikγ(0)jl − 1

3γ(0)klγ(0)ij

)
1√
γ(0)

π̂(4)
kl. (3.19)

Similarly, the first order equations for the coefficients in the dilaton expansion are

λ̇(0) − ξ−2λ(0)U
′(λ(0)) = 0, (3.20)

λ̇(2) −
(

2

ℓ
+ 2ξ−2λ(0)U

′(λ(0)) + ξ−2λ(0)
2U ′′(λ(0))

)
λ(2) =

ξ−2λ(0)
2Ξ′(λ(0))R[γ(0)]

−M(λ(0))�(0)λ(0) + 1
2λ(0)

−1
(
2M(λ(0))− λ(0)M

′(λ(0))
)
D(0)iλ(0)D(0)

iλ(0)

+1
2ξ−2λ(0)

2Θ′(λ(0))D(0)iχ(0)D(0)
iχ(0), (3.21)

λ̇(4) −
(

4

ℓ
+ 2ξ−2λ(0)U

′ + ξ−2λ(0)
2U ′′

)
λ(4) =

(
U ′ + 2λ(0)U

′′ + 1
2λ(0)

2U ′′′) ξ−2λ(2)
2 − λ(2)M

′
�(0)λ(0)

+M
(
γ(2)

ijD(0)iD(0)jλ(0) −�(0)λ(2) + 1
2(2D(0)iγ(2)

i
j −D(0)jγ(2))D(0)

jλ(0)

)

+ ξ−2

2 λ(0)λ(2)

(
2Θ′ + λ(0)Θ

′′)D(0)iχ(0)D(0)
iχ(0) + ξ−2λ(0)λ(2)

(
2Ξ′ + λ(0)Ξ

′′)R[γ(0)]

+ ξ−2

2 λ(0)
2Θ′ (2D(0)

iχ(0)D(0)iχ(2) − γ(2)
ij∂iχ(0)∂jχ(0)

)

+ξ−2λ(0)
2Ξ′ (D(0)

iD(0)
jγ(2)ij −�(0)γ(2) − γ(2)

ijR[γ(0)]ij
)

+1
2λ(2)λ(0)

−1
(
M ′ − λ(0)M

′′)D(0)iλ(0)D(0)
iλ(0) + 1

2λ(0)
−1
(
M ′ − 2λ(0)

−1M
)
×

(
λ(2)D(0)iλ(0)D(0)

iλ(0) + λ(0)γ(2)
ij∂iλ(0)∂jλ(0) − 2λ(0)D(0)iλ(0)D(0)

iλ(2)

)

+ 1
4ξ2 λ(0)

2
(
a′
(
Rij [γ(0)]R

ij [γ(0)]− 1
3R2[γ(0)]

)
+ c′

(
D(0)iχ(0)D(0)

iχ(0)

)2

+b′
[(

Rij[γ(0)]− 1
3R[γ(0)]γ(0)ij

)
D(0)

iχ(0)D(0)
jχ(0) − 1

2(�(0)χ(0))
2
])

+κ2ξ−2λ(0)
2 1√

γ(0)
π̂λ(4). (3.22)
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Finally, for the axion we get

χ̇(0) = 0, (3.23)

χ̇(2) −
2

ℓ
χ(2) =

−Z−1(λ(0))
(
Θ(λ(0))�(0)χ(0) + Θ′(λ(0))D(0)iλ(0)D(0)

iχ(0)

)
, (3.24)

χ̇(4) −
4

ℓ
χ(4) =

−λ(2)Z
−1
(
Θ′ − Z−1Z ′Θ

)
�(0)χ(0) + Z−1Θγ(2)

ijD(0)iD(0)jχ(0)

−Z−1Θ
(
�(0)χ(2) − 1

2

(
2D(0)iγ(2)

i
j −D(0)jγ(2)

)
D(0)

jχ(0)

)

−Z−1Θ′ (D(0)iχ(0)D(0)
iλ(2) + D(0)iχ(2)D(0)

iλ(0) − γ(2)
ij∂iλ(0)∂jχ(0)

)

−Z−1λ(2)

(
Θ′′ − Z−1Z ′Θ′)D(0)iλ(0)D(0)

iχ(0)

−1
2Z−1D(0)

i
(
b
(
Rij [γ(0)]− 1

3R[γ(0)]γ(0)ij

)
D(0)

jχ(0) + 1
2D(0)i(b�(0)χ(0))

+2cD(0)kχ(0)D(0)
kχ(0)∂iχ(0)

)
+ κ2Z−1 1√

γ(0)
π̂χ(4). (3.25)

In all these first order equations all functions are functions of λ(0)(r, x) and primes denote

derivative w.r.t. λ(0).

From these equations we can now easily construct the asymptotic expansions. The non-

linear equations for the zero order coefficients can be integrated exactly in terms of the

function U(λ(0)). Using the asymptotic form of U(λ) in (3.4) one obtains the asymptotic

expansions

γ(0)ij(r, x) =
(r

ℓ

)2ξ2/3
(

1− 4U2

3b2
0

(
ℓ

r

)
log(r/ℓ)− 2

3

(
U2

b2
0

+ b0ξ
2λ̄(0)(x)

)(
ℓ

r

)

+
4Uα

3(α − 2)bα
0

(
ℓ

r

)α−1

+O
(
log2(r/ℓ)/r2

)
)

ḡ(0)ij(x), (3.26)

λ(0)(r, x) =
ℓ

b0r
+

2U2

ξ2b3
0

(
ℓ

r

)2

log(r/ℓ) +

(
ℓ

r

)2

λ̄(0)(x)− αUα

(α− 2)ξ2bα+1
0

(
ℓ

r

)α

+O
(
log2(r/ℓ)/r3

)
,

χ(0)(r, x) = χ̄(0)(x), (3.27)

where ḡ(0)ij(x), λ̄(0)(x) and χ̄(0)(x) are arbitrary and we identify them with the sources

of the dual operators. A striking feature of the zero order dilaton expansion is that the

source, λ̄(0)(x), that couples to the dual operator appears not in the leading order, but at

O(1/r2). This is related to the fact that λ̄(0)(x) can be removed by a bulk diffeomorphism

corresponding to shifts of the radial coordinate, which we will demonstrate below. However,

we have already made extensive use of the identity ∂iλ = O(λ2) in deriving the results in

tables 5 and 6, which follows precisely from the observation that the source of the dilaton

appears at subleading order.
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At the second order we get

γ(2)ij(r, x) = ḡ(2)ij(x) +O
(

1

r
log(r/ℓ)

)
,

λ(2)(r, x) =

(
ℓ

r

)2+2ξ2/3(
λ̄(2)(x) +O

(
1

r
log(r/ℓ)

))
,

χ(2)(r, x) =

(
ℓ

r

)2ξ2/3(
χ̄(2)(x) +O

(
1

r
log(r/ℓ)

))
, (3.28)

where

ḡ(2)ij(x) = −ℓ2

2

(
Rij [ḡ(0)]−

1

6
ḡ(0)ijR[ḡ(0)] (3.29)

−
(
M3

plN
2
c

)−1
Z0

(
∂iχ̄(0)∂jχ̄(0) −

1

6
ḡ(0)ijD̄(0)kχ̄(0)D̄(0)

kχ̄(0)

))
,

λ̄(2)(x) = −ℓ2

4

(
1

6b0
R[ḡ(0)]−�(0)λ̄(0) (3.30)

+
1

2ξ2b2
0

(
M3

plN
2
c

)−1
(

Z1 −
ξ2b0

3
Z0

)
D̄(0)kχ̄(0)D̄(0)

kχ̄(0)

)
,

χ̄(2)(x) =
ℓ2

4

(
M3

plN
2
c

)−1
�(0)χ̄(0). (3.31)

Finally, at fourth order the asymptotic expansions take the form

γ(4)ij(r, x) =

(
ℓ

r

)2ξ2/3((r

ℓ

)
ḡ(4)ij(x) + log(r/ℓ)g̃(4)ij(x) + ĝ(4)ij(x) +O

(
log(r/ℓ)

r

))
,

λ(4)(r, x) =

(
ℓ

r

)4ξ2/3(
λ̂(4)(x) +O

(
log(r/ℓ)

r

))
, (3.32)

χ(4)(r, x) =

(
ℓ

r

)4ξ2/3((r

ℓ

)
χ̄(4)(x) + log(r/ℓ)χ̃(4)(x) + χ̂(4)(x) +O

(
log(r/ℓ)

r

))
,

where the terms ĝ(4)ij(x), λ̂(4)(x) and χ̂(4)(x) are undetermined and are therefore identified

with the normalizable modes. The flow equations relate these to the undetermined renor-

malized momenta, thus leading to the expressions for the one-point functions in terms of

the coefficients of the asymptotic expansions, which we present below.

In order to write down the explicit expressions for the coefficients in these fourth order

expansions, it is useful to define the traceless tensors

H1ij = −2

(
Rikjl −

1

4
Rklḡ(0)ij

)
Rkl +

2

3
R

(
Rij −

1

4
Rḡ(0)ij

)

+
1

3
D̄(0)iD̄(0)jR−�(0)Rij +

1

6
ḡ(0)ij�(0)R, (3.33)

H2ij =

(
−Rikjl +

1

2
ḡ(0)ijRkl −R(ikḡ(0)j)l

−1

6
Rḡ(0)ij ḡ(0)kl +

1

3
Rḡ(0)ikḡ(0)jl +

1

3
Rij ḡ(0)kl

)
D̄(0)

kχ̄(0)D̄(0)
lχ̄(0)
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+D̄(0)(iD̄(0)
k(∂kχ̄(0)∂j)χ̄(0))−

1

2
�(0)(∂iχ̄(0)∂jχ̄(0))

−1

6
ḡ(0)ijD̄(0)kD̄(0)l(D̄(0)

kχ̄(0)D̄(0)
lχ̄(0))

−1

3
D̄(0)iD̄(0)j(D̄(0)kχ̄(0)D̄(0)

kχ̄(0)) +
1

6
ḡ(0)ij�(0)(D̄(0)kχ̄(0)D̄(0)

kχ̄(0))

+D̄(0)iD̄(0)jχ̄(0)�(0)χ̄(0) − D̄(0)(i(�(0)χ̄(0)D̄(0)j)χ̄(0))

+
1

6
ḡ(0)ijD̄(0)k(�(0)χ̄(0)D̄(0)

kχ̄(0))−
1

4
ḡ(0)ij(�(0)χ(0))

2, (3.34)

H3ij =

(
1

2
ḡ(0)ijD̄(0)kχ̄(0)D̄(0)

kχ̄(0) − 2∂iχ̄(0)∂jχ̄(0)

)
D̄(0)lχ̄(0)D̄(0)

lχ̄(0). (3.35)

As mentioned in the previous section, these correspond respectively to the derivative of

the three terms proportional to c1, c2 and c3 in the boundary term (3.8) w.r.t. the induced

metric. All curvatures here are curvatures of the boundary metric ḡ(0)ij. The first two

coefficients in the fourth order expansion of the metric are just linear combinations of

these three traceless tensors. Namely,

ḡ(4)ij(x) =
ℓ4

8
H1ij −

ℓ4

4
Z0

(
M3

plN
2
c

)−1
H2ij +

ℓ4

12
Z2

0

(
M3

plN
2
c

)−2
H3ij, (3.36)

g̃(4)ij(x) =
ℓ4

12

(
2U2

b2
0

− ξ2

)
H1ij −

ℓ4

4
Z0

(
M3

plN
2
c

)−1
(

4U2

3b2
0

− 2ξ2

3
+

Z1

b0Z0

)
H2ij

+
ℓ4

12
Z2

0

(
M3

plN
2
c

)−2
(

4U2

3b2
0

− 2ξ2

3
+

2Z1

b0Z0

)
H3ij . (3.37)

Moreover, for the coefficients of the axion expansion we have

χ̄(4)(x) =
ℓ4

8
D̄(0)

i

((
M3

plN
2
c

)−1
[(

Rij [ḡ(0)]−
1

3
R[ḡ(0)]ḡ(0)ij

)
D̄(0)

jχ̄(0) +
1

2
D(0)i�(0)χ(0)

]

−2

3
Z0

(
M3

plN
2
c

)−2
D̄(0)kχ̄(0)D̄(0)

kχ̄(0)∂iχ̄(0)

)
, (3.38)

and

χ̃(4)(x) =
ℓ4

8
D̄(0)

i

((
M3

plN
2
c

)−1
(

8U2

3b2
0

− 2ξ2

3
+

Z1

b0Z0

)
×

[(
Rij [ḡ(0)]−

1

3
R[ḡ(0)]ḡ(0)ij

)
D̄(0)

jχ̄(0) +
1

2
D(0)i�(0)χ(0)

]

−2

3
Z0

(
M3

plN
2
c

)−2
(

8U2

3b2
0

− 2ξ2

3
+

2Z1

b0Z0

)
D̄(0)kχ̄(0)D̄(0)

kχ̄(0)∂iχ̄(0)

)
. (3.39)

Finally, we can write down the general expressions for the one-point functions, i.e. the

renormalized momenta, in terms of the coefficients of the asymptotic expansions. Starting

from the dilaton, the exact one-point function in given by

〈Oλ〉ren =

−b0ℓ
3

8κ2

(
32b0ξ

2

ℓ4
λ̂(4) + Rij [ḡ(0)]R

ij[ḡ(0)]−
1

3
R2[ḡ(0)]
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−2Z0

(
M3

plN
2
c

)−1
[(

Rij [ḡ(0)]−
1

3
R[ḡ(0)]ḡ(0)ij

)
D̄(0)

iχ̄(0)D̄(0)
jχ̄(0) −

1

2
(�(0)χ̄(0))

2

]

+
2

3
Z2

0

(
M3

plN
2
c

)−2 (
D̄(0)

iχ̄(0)D̄(0)iχ̄(0)

)2
)

. (3.40)

Notice that this gets contributions from the dilaton normalizable mode, λ̂(4), plus a com-

bination of the metric and axion sources which is nothing but the conformal anomaly of

the axion-gravity system in strictly asymptotically AdS space (cf. (B.12)).

All results quoted so far are valid for arbitrary dilaton source λ̄(0)(x). However, in order

to simplify the expressions for the stress tensor and axion one-point functions, we will only

give the expressions for constant λ̄(0), independent of the transverse coordinates. This is

not a big disadvantage since, as we shall see, the dilaton source can be removed or restored

by a bulk diffeomorphism corresponding to a Weyl transformation of the boundary metric.

The full dependence on a generic dilaton source can therefore be restored starting from the

expressions given below for constant λ̄(0)(x), by a suitable boundary Weyl transformation.

The one-point function of the stress tensor can be written in the form

〈Tij〉ren =
2

κ2ℓ

(
Ωij −Tr Ωḡ(0)ij

)
− 1

4b0
〈Oλ〉ren ḡ(0)ij , (3.41)

where the tensor Ωij is given by

Ωij = ĝ(4)ij +
ξ2b0

3
λ̂(4)ḡ(0)ij

−ℓ4

8
c′1H1ij +

ℓ4

4
Z0

(
M3

plN
2
c

)−1
c′2H2ij −

ℓ4

12
Z2

0

(
M3

plN
2
c

)−2
c′3H3ij

+
ℓ2

4

(
D̄(0)kD̄(0)(iḡ(2)

k
j) −

1

2
�(0)ḡ(2)ij −

1

2
D̄(0)iD̄(0)jTr ḡ(2)

)

−ℓ2

8
Z0

(
M3

plN
2
c

)−1
∂(iχ̄(0)∂j)χ̄(2)

− ℓ2

24
ḡ(2)ij

(
R + Z0

(
M3

plN
2
c

)−1
D̄(0)kχ̄(0)D̄(0)

kχ̄(0)

)

− ℓ2

24
ḡ(0)ij

(
D̄(0)

kD̄(0)
lḡ(2)kl −�(0)Tr ḡ(2) − ḡ(2)

klRkl

)

− ℓ2

12
Z0

(
M3

plN
2
c

)−1
ḡ(0)ij

(
D̄(0)

kχ̄(0)D̄(0)kχ̄(2) −
1

2
ḡ(2)

kl∂kχ̄(0)∂lχ̄(0)

)

+
ℓ4

192
ḡ(0)ij

(
RklR

kl − 1

3
R2

−2Z0

(
M3

plN
2
c

)−1
[(

Rkl −
1

3
Rḡ(0)kl

)
D̄(0)

kχ̄(0)D̄(0)
lχ̄(0) −

1

2
(�(0)χ̄(0))

2

]

+
2

3
Z2

0

(
M3

plN
2
c

)−2 (
D̄(0)

iχ̄(0)D̄(0)iχ̄(0)

)2
)

. (3.42)

Here we have defined the shifted constants

c′1 = c1 +
2U2

3b2
0

+

(
2ξ2

3
− 1

)
b0λ̄(0) − 2ζ log b0 +

1

4

(
4ξ2

3
− 1

)
,
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c′2 = c2 +
2U2

3b2
0

+

(
2ξ2

3
− 1

)
b0λ̄(0) −

(
2ζ − Z1

b0Z0

)
log b0 +

1

4

(
4ξ2

3
− 1

)
,

c′3 = c3 +
2U2

3b2
0

+

(
2ξ2

3
− 1

)
b0λ̄(0) −

(
2ζ − 2Z1

b0Z0

)
log b0 +

1

4

(
4ξ2

3
− 1

)
. (3.43)

In principle, one can set these constants to zero by suitable choice of scheme, i.e. by a

suitable choice of c1, c2 and c3, but we give the full expressions so that one knows exactly

what scheme needs to be chosen to achieve this.

Finally, the one-point function of the operator dual to the axion is

〈Oχ〉ren = −4Z0

κ2ℓ
χ̂(4)

+
ℓ3

2κ2
Z0

(
M3

plN
2
c

)−1
c′′2D̄(0)

i

[(
Rij −

1

3
Rḡ(0)ij

)
D̄(0)

jχ̄(0) +
1

2
D̄(0)i�(0)χ̄(0)

]

− ℓ3

3κ2
Z2

0

(
M3

plN
2
c

)−2
c′′3D̄(0)

i
[
D̄(0)kχ̄(0)D̄(0)

kχ̄(0)∂iχ̄(0)

]

+
ℓ

2κ2
Z0

(
M3

plN
2
c

)−1 × (3.44)
[
�(0)χ̄(2) −

1

2

(
2D̄(0)iḡ(2)

i
j − D̄(0)jTr ḡ(2)

)
D̄(0)

jχ̄(0) − ḡ(2)
ijD̄(0)iD̄(0)jχ̄(0)

]
,

where again we have introduced the constants

c′′2 = c′2 +
2U2

3b2
0

+
2ξ2

3
b0λ̄(0) −

Z1

b0Z0
,

c′′3 = c′3 +
2U2

3b2
0

+
2ξ2

3
b0λ̄(0) −

Z1

b0Z0
, (3.45)

to abbreviate the above expression.

3.3 Asymptotic diffeomorphisms and Ward identities

Now that we have determined the general form of the asymptotic expansions for IHQCD

and we have identified the exact one-point functions, we can proceed with the derivation of

the holographic Ward identities. These follow as a consequence of the existence of a class of

asymptotic bulk diffeomorphisms that preserve the structure of the asymptotic expansions.

Let us consider a generic infinitesimal bulk diffeomorphism, δxµ = −ξµ, and demand

that it preserves the gauge fixed form of the metric, namely that it does not modify the

lapse and shift functions. This requirement leads to a pair of equations for the vector field

ξµ, namely

Lξgrr = ξ̇r = 0,

Lξgri = γij(ξ̇
j + ∂jξr) = 0, (3.46)

where Lξ is the Lie derivative w.r.t. the bulk vector ξµ. Solving these conditions gives

ξr = δσ(x),

ξi = ξi
o(x) + ∂jδσ(x)

� ∞

r
dr′γji(r′, x), (3.47)

– 31 –



J
H
E
P
0
8
(
2
0
1
1
)
1
1
9

where σ(x) is an arbitrary function of the transverse coordinates and ξi
o(x) is an arbitrary

transverse vector field. Inserting now the asymptotic form of the induced metric we obtain

ξi = ξi
o(x) +

ℓ

2
e−2r/ℓ

(
ℓ

r

) 2ξ2

3

ḡ(0)
ij∂jδσ(x) +O

(
e−2r/ℓr−

2ξ2

3
−1 log(r/ℓ)

)
. (3.48)

Under this bulk diffeomorphism then the induced fields transform as

δξγij = Lξgij = Lξγij + 2Kijξ
r = Lξoγij −

2

d− 1
U(λ)γijδσ(x) +O(r−2ξ2/3),

δξλ = Lξλ = Lξλ + ξrλ̇ = ξi
o∂iλ + ξ−2λ2 ∂U

∂λ
δσ(x) +O(r−2−2ξ2/3e−2r/ℓ),

δξχ = Lξχ = Lξχ + ξrχ̇ = ξi
o∂iχ +O(r−2ξ2/3e−2r/ℓ), (3.49)

where Lξ denotes the Lie derivative w.r.t. the transverse components ξi of the bulk vector

field ξ. It follows that the sources, ḡ(0)ij(x), λ̄(0)(x) and χ̄(0)(x) transform under such a

diffeomorphism as

δξ ḡ(0)ij = Lξo ḡ(0)ij +
2

ℓ
δσ(x)ḡ(0)ij ,

δξ λ̄(0) = ξi
o(x)∂iλ̄(0) −

1

b0ℓ
δσ(x),

δξχ̄(0) = ξi
o(x)∂iχ̄(0). (3.50)

There is nothing surprising about the transformation of the metric and axion sources. They

are exactly as they would be in the case of strictly asymptotically AdS space. Namely, the

bulk diffeomorphisms that preserve the form of the asymptotic expansions correspond to

arbitrary boundary diffeomorphisms parameterized my ξi
o(x), as well as boundary Weyl

transformations, parameterized by the function σ(x). What is rather unusual, is the trans-

formation of the dilaton source, λ̄(0) under the Weyl transformation δσ. Contrary to the

usual multiplicative transformation of the sources, the transformation of λ̄(0) is additive

under boundary Weyl rescalings. This means that one can in fact remove the dilaton source

completely by means of a boundary Weyl rescaling.

We can now also determine the transformation of the one-point functions under bound-

ary Weyl rescalings. The above transformations of the sources imply that the corresponding

functional derivatives transform as

δσ

(
δ

δḡ(0)ij

)
= −2

ℓ
δσ(x)

δ

δḡ(0)ij
, δσ

(
δ

δλ̄(0)

)
= 0, δσ

(
δ

δχ̄(0)

)
= 0. (3.51)

Moreover, the renormalized action

Sren = lim
r→∞

Ŝ(4), (3.52)
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is invariant under any bulk diffeomorphism since the boundary term (3.8) does not break

the bulk diffeomorphisms. Hence,

δσ

〈
T i

j

〉
ren

= δσ

(
1√
ḡ(0)

ḡ(0)
ik δSren

δḡ(0)kj

)
= −4

ℓ
δσ
〈
T i

j

〉
ren

,

δσ 〈Oλ〉ren = δσ

(
1√
ḡ(0)

δSren

δλ̄(0)

)
= −4

ℓ
δσ 〈Oλ〉ren ,

δσ 〈Oχ〉ren = δσ

(
1√
ḡ(0)

δSren

δχ̄(0)

)
= −4

ℓ
δσ 〈Oχ〉ren , (3.53)

that is all one-point functions transform homogeneously under boundary Weyl rescalings.

The Ward identities now follow from the identity

δξSren =

�
ddx

(
−1

2
δξ ḡ(0)ij

〈
T ij
〉
ren

+ δξλ̄(0) 〈Oλ〉ren + δξχ̄(0) 〈Oχ〉ren

)
= 0. (3.54)

Inserting the transformation of the sources under the bulk diffeomorphisms considered

above and using the fact that δσ(x) and ξi
o(x) are arbitrary leads respectively to

〈
T i

i

〉
ren

= − 1

b0
〈Oλ〉ren ,

D(0)i
〈
T i

j

〉
ren

+ 〈Oλ〉ren ∂j λ̄(0) + 〈Oχ〉ren ∂jχ̄(0) = 0. (3.55)

An immediate consequence of the trace Ward identity is that the tensor Ωij introduced

above is traceless.

Finally, let us examine a bit closer the relation between the dilaton source λ̄(0) and

boundary Weyl transformations. Note that the assignment of sources in the leading order

asymptotic solutions (3.26) is rather arbitrary. In particular, we could have included a

factor of the dilaton source in the definition of the boundary metric. Suppose, in particular,

that we define

ḡ(0)ij(x) = e−2b0λ̄(0)(x)ǧ(0)ij(x), (3.56)

Then, inserting this boundary metric back in (3.26)12 and evaluating the variation of the

induced fields with respect to variations of the dilaton source λ̄(0), one immediately sees

from (3.49) that transformations of the dilaton source correspond precisely to boundary

Weyl transformations upon the identification

σ(x) = −b0ℓλ̄(0)(x). (3.57)

This observation proves that the source of the dilaton is gauge freedom that can be removed

by a bulk diffeomorphism corresponding to a boundary Weyl transformation. This property

can also be used to restore the full dependence on the dilaton source of the one-point

functions of the stress tensor and the axion.

12The same can be done with the higher order terms in the asymptotic expansions but we will not do

this explicitly here.
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4 Concluding remarks

We considered a generic dilaton-axion system coupled to Einstein-Hilbert gravity in arbi-

trary spacetime dimension and we carried out the procedure of holographic renormalization

of this action for dimension up to and including five dimensions. The general boundary

term that renders the variational problem for this action well defined is summarized in

tables 2 and 3. This result is applicable to a very wide range of holographic models in the

literature, including N = 4 super Yang-Mills in four dimensions, Improved Holographic

QCD and non-conformal branes. We explicitly evaluated this general boundary term for a

constant dilaton potential, corresponding to the standard dilaton-axion system dual to the

complexified coupling of N = 4 super Yang-Mills in four dimensions, in appendix B, and

for IHQCD in section 3. In particular, we systematically derived the generalized Fefferman-

Graham asymptotic expansions, provided exact expressions for the one-point functions in

the presence of sources, and proved the holographic holographic Ward identities by studying

the asymptotic bulk diffeomorphisms that preserve the form of the asymptotic expansions.

In the case of IHQCD, an important lesson from the analysis is that the source of

the dilaton is not a physical coupling, but its value can be thought of as an energy scale.

In particular, changes in the dilaton source can be absorbed by a Weyl rescaling of the

boundary metric. Moreover, the operator dual to the dilaton field λ is the combination

Oλ = β(λY M )Tr F 2, (4.1)

which has fixed scaling dimension 4 under renormalization group flow. This is the combi-

nation that appears in the trace Ward identity 3.3, since the coefficient relating the trace

of the stress tensor to the operator Oλ is a constant, independent of the renormalization

group scale λ̄(0).

Our calculation for IHQCD, independently of the legitimacy of the model as a physi-

cally sound holographic model dual to pure Yang-Mills theory in four dimensions, provides

us with an explicit example of a gravity model that can accommodate operators with

running scaling dimensions. This is particularly interesting since it allows us, in princi-

ple, to develop supergravity holographic models capturing the dynamics of operators with

non-protected scaling dimensions.
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A Functional integration

In this appendix we outline the derivation of the functional integration formulas in table 1.

In particular, the question we want to address is the following: given a local functional
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R(2n)(ϕ) of the scalar field, ϕ, what is the local functional F (2n)(ϕ) such that (cf. (2.38))

δϕ

U ′(ϕ)
ean(ϕ)R(2n)(ϕ) = δϕF (2n)(ϕ) + ean(ϕ)∂iv(2n)

i(ϕ, δϕ), (A.1)

where an(ϕ) is a prescribed function of ϕ and v(2n)
i(ϕ, δϕ) is some vector field? If the

source R(2n)(ϕ) does not involve spacetime derivatives of the scalar field the answer to this

question is given by simple integration. However, if R(2n)(ϕ) involves derivatives of ϕ, then

determining F (2n)(ϕ) becomes less trivial. It turns out that one can still find a general

formula if R(2n)(ϕ) involves first derivatives of the scalar field, but once R(2n)(ϕ) contains

second and higher order derivatives of the scalar field finding a general formula becomes

much harder. What we will do instead here is to consider only the sources R(2n)(ϕ) which

are relevant to our computation of the solution of the Hamilton-Jacobi equation in the

main body of the paper.

• R(2n)(ϕ) = r1m(ϕ)ti1i2...im∂i1ϕ∂i2ϕ . . . ∂imϕ

The first example is a generic source that is polynomial in first derivatives. Here,

ti1i2...im is an arbitrary totally symmetric tensor that does depend on ϕ. In this case

we can write F (2n) as

F (2n) = ean
(
α(ϕ)ti1i2...im∂i1ϕ∂i2ϕ . . . ∂imϕ + Di

(
β(ϕ)tii2...imϕ∂i2ϕ . . . ∂imϕ

))
,

(A.2)

where the functions α(ϕ) and β(ϕ) are to be determined. Evaluating the variation

of this expression and inserting the result in (A.1) we obtain the two equations

β =
m

a′n
α

α′ −m
a′′n
a′n

α =
r1m

U ′ , (A.3)

which can be solved to determine α(ϕ) and β(ϕ). Since β(ϕ) contributes a total

derivative to Hamilton’s principal function, i.e. to e−an(ϕ)F (2n), we are only interested

in α(ϕ), which is given by

α(ϕ) = a′mn e−an

� ϕ dϕ̄

U ′ e
ana′−m

n r1m(ϕ̄) =

 ϕ

n,m
r1m(ϕ̄). (A.4)

• r2(ϕ)tijDiDjϕ

Similarly, for a source with a single second derivative of the scalar field we can write

F (2n) = ean
(
α(ϕ)tijDiDjϕ + β(ϕ)tij∂iϕ∂jϕ + Di

(
γ(ϕ)tij∂jϕ + δ(ϕ)Dj t

ij
))

.

(A.5)

Here, tij is again a symmetric tensor that does not depend on ϕ. Inserting the

variation of this expression in (A.1) leads to the following equations for the functions

α(ϕ), β(ϕ), γ(ϕ) and δ(ϕ)

a′n(β + γ′) + α′′ − β′ = 0,

a′n(γ + δ′) + 2(α′ − β) = 0,
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a′nδ + α = 0,

2α′ + a′n(α + γ)− 2β =
r2

U ′ . (A.6)

These can be immediately solved to obtain

α(ϕ) = a′ne−an

� ϕ dϕ̄

U ′ e
ana′−1

n r(ϕ̄) =

 ϕ

n,1
r(ϕ̄), (A.7)

β(ϕ) = −a′2n e−an

� ϕ dϕ̄

U ′ e
ana′−2

n U ′a′n∂2
ϕ̄

(
1

a′n

)
α(ϕ̄) = −

 ϕ

n,2
U ′a′n∂2

ϕ̄

(
1

a′n

)
α(ϕ̄).

•
(
r122(ϕ)tijkl

1 +s122(ϕ)tijkl
2

)
∂iϕ∂jϕDkDlϕ+

(
r22(ϕ)tijkl

1 + s22(ϕ)tijkl
2

)
DiDjϕDkDlϕ

As a final example we consider a generic term with four derivatives, but we restrict to

covariantly constant tensors tijkl
1 and tijkl

2 . In particular, for our purposes it suffices

to take these two tensors to be the two linearly independent tensors constructed out

of the metric. Namely, we will take

tijkl
1 =

1

3

(
γikγjl + γilγjk + γijγkl

)
, tijkl

2 =
1

3

(
γikγjl + γilγjk − 2γijγkl

)
. (A.8)

Moreover, we need not consider a source for four first derivatives since we have already

computed the result for an arbitrary number of first derivatives above. Writing then

F (2n) = ean

(
AijklDiDjϕDkDlϕ + Bijkl∂iϕ∂jϕDkDlϕ + Cijkl∂iϕ∂jϕ∂kϕ∂lϕ

+Di

(
EijklDjDkDlϕ + H ijkl∂jϕDkDlϕ + Gijkl∂jϕ∂kϕ∂lϕ

))
, (A.9)

and inserting the variation of this expression in (A.1) we obtain the set of cou-

pled equations

3A′ijkl + a′nAijkl + Bilkj + Bikjl − 2Bijkl + a′nH ijkl

=
1

U ′

(
r22(ϕ)tijkl

1 + s22(ϕ)tijkl
2

)

2A′ijkl + 2
(
B′kjil + B′ljik

)
− 12Cijkl + a′n

(
Bijkl + H ′ijkl + Gklij + Gljik + Gkjil

)

=
1

U ′

(
r122(ϕ)tijkl

1 + s122(ϕ)tijkl
2

)
,

−3C ′ijkl + B′′(ijkl) + a′n

(
Cijkl + G′(ijkl)

)
= 0,

4A′ijkl + Bkijl + Blijk − 2Bijkl + a′n

(
E′ijkl + H ijkl

)
= 0,

2Aijkl + a′nEijkl = 0. (A.10)

Here, the parentheses in the indices mean total symmetrization. Note that these are

five equations for six undetermined tensors. They can be solved as follows. First

we can use the last two equations to eliminate Eijkl and H ijkl. This leads to the

decoupled equation

A′ijkl +

(
a′n −

2a′′n
a′n

)
Aijkl =

1

U ′

(
r22(ϕ)tijkl

1 + s22(ϕ)tijkl
2

)
, (A.11)
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whose solution is

Aijkl = a′2n e−an

� ϕ dϕ̄

U ′ e
ana′−2

n

(
r22(ϕ)tijkl

1 + s22(ϕ)tijkl
2

)
. (A.12)

Next, we can set

a′nGijkl = 4Cijkl, (A.13)

so that we obtain the following two equations for Bijkl and Cijkl:

2B′ijkl + B′kijl + B′lijk +

(
a′n −

2a′′n
a′n

)
Bijkl +

2a′′n
a′n

(
Bkijl + Blijk

)

=
1

U ′

(
r122(ϕ)tijkl

1 + s122(ϕ)tijkl
2

)
− 2a′n∂2

ϕ

(
1

a′n

)
Aijkl, (A.14)

and

C ′ijkl +

(
a′n −

4a′′n
a′n

)
Cijkl + B′′(ijkl) = 0. (A.15)

The last equation for Cijkl gives

Cijkl = a′4n e−an

� ϕ dϕ̄

U ′ e
ana′−4

n

(
−B′′(ijkl)

)
. (A.16)

To solve for Bijkl we first decompose it as

Bijkl = α(ϕ)tijkl
1 + β(ϕ)tijkl

2 . (A.17)

Inserting this into the above equation for Bijkl leads to the two decoupled equations

4α′ + a′nα =
1

U ′σ,

β′ +

(
a′n −

3a′′n
a′n

)
β =

1

U ′ω, (A.18)

where

σ = r122(ϕ)− 2U ′a′n∂2
ϕ

(
1

a′n

)
a′2n e−an

� ϕ dϕ̄

U ′ e
ana′−2

n r22(ϕ̄),

ω = s122(ϕ)− 2U ′a′n∂2
ϕ

(
1

a′n

)
a′2n e−an

� ϕ dϕ̄

U ′ e
ana′−2

n s22(ϕ̄). (A.19)

These equations give

α =
1

4
e−an/4

� ϕ dϕ̄

U ′ e
an/4σ,

β = a′3n e−an

� ϕ dϕ̄

U ′ e
ana′−3

n ω. (A.20)

Moreover, since B(ijkl) = αtijkl
1 , we have

Cijkl = −tijkl
1 a′4n e−an

� ϕ dϕ̄

U ′ e
ana′−4

n α′′. (A.21)
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These results can be simplified considerably by noticing that the terms involving α

combine into a total derivative, up to a homogeneous term that is irrelevant since it

contributes a finite piece. To see this, integrate by parts the first term in

αtijkl
1 ∂iϕ∂jϕDkDlϕ + ctijkl

1 ∂iϕ∂jϕ∂kϕ∂lϕ, (A.22)

which gives

− 2αtijkl
1 ∂iϕ∂jϕDkDlϕ + (c− α′)tijkl

1 ∂iϕ∂jϕ∂kϕ∂lϕ. (A.23)

We can now replace the first of these expressions in F (2n) by 2/3 of the first expression

plus 1/3 of the second, such that the coefficient of tijkl
1 ∂iϕ∂jϕDkDlϕ vanishes. This

replaces c by c̃ = c− α′/3. However, we have seen above that the only source of the

equation satisfied by c, or c̃ now, is the coefficient of tijkl
1 ∂iϕ∂jϕDkDlϕ. Since we

have now set this coefficient to zero, c̃ satisfies a homogeneous equation and hence

we can set c̃ = 0. We therefore conclude that, without loss of generality, we have

Bijkl = β(ϕ)tijkl
2 , Cijkl = 0, (A.24)

for any σ(ϕ). Notice, in particular, that the source r122(ϕ) gives no contribution at all.

B Dilaton-axion system with constant dilaton potential

In this appendix13 we focus on the special case of a constant dilaton potential (ℓ = 1)

V (ϕ) = d(d− 1) = 12. (B.1)

This special case drastically simplifies the solution of both the zero order problem (2.26)

and the linear recursion equations (2.31). In particular, the first order differential equations

are replaced by algebraic equations. Namely, we have14

− d

d− 1
U2 + d(d− 1) = 0, (B.3)

−
(

d− 2n

d− 1

)
UL(2n) = R(2n), n > 0. (B.4)

13The author is grateful to David Mateos and Diego Trancanelli for checking the results of this appendix

and for pointing out typos in a preliminary version. Of course, the author is solely responsible for any

remaining typos.
14In addition to the constant solution U(ϕ) = −(d − 1) of (2.29) there is additionally a one-parameter

family of non-constant solutions given by [30, 31]

U(ϕ) = −(d − 1) cosh

 

r

d

d − 1
(ϕ − ϕo)

!

, (B.2)

for some arbitrary constant ϕo and AdS asymptotics requires that ϕ → ϕo asymptotically. However, this

solution only allows for a constant non-normalizable mode for the dilaton, i.e. ϕo cannot be a function of

the transverse coordinates x and hence it does not correspond to the most general asymptotics. In fact, a

domain wall with such a ‘fake superpotential’ describes a vacuum where the operator dual to the dilaton

field has acquired a VEV [31]. Finally note that a special feature of equation (2.26) with constant scalar

potential is that the solution describing the most general asymptotics, i.e. U(ϕ) = −(d − 1), is isolated in

the space of solutions, while the one-parameter family of solutions describes special asymptotics. This is

the reverse of what happens for non-constant scalar potentials.
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From these we immediately obtain

U = −(d− 1),

L(2) = − 1

2(d− 2)κ2

√
γ
(
R[γ]− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂iχ

)
, (B.5)

where we have fixed the sign of U by demanding that the solution leads, via the relation

γ̇ij ∼ −
2

d− 1
Uγij, (B.6)

to the correct asymptotics for the induced metric γij .

In order to compute L(4) we need to compute the momenta from L(2). We easily get

(2)
ij =

1

2(d − 2)κ2

√
γ

(
Rij − ∂iϕ∂jϕ− Z(ϕ)∂iχ∂jχ

−1

2
γij
(
R− ∂kϕ∂kϕ− Z(ϕ)∂kχ∂kχ

))
,

πϕ(2) = − 1

(d− 2)κ2

√
γ

(
�γϕ− 1

2
Z ′(ϕ)∂iχ∂iχ

)
,

πχ(2) = − 1

(d− 2)κ2

√
γ
(
Z(ϕ)�γχ + Z ′(ϕ)∂iϕ∂iχ

)
. (B.7)

Hence, from (2.32), we evaluate

R(4) = −2κ2γ− 1
2

(
π(2)

i
jπ(2)

j
i −

1

d− 1
π(2)

2 +
1

4
πϕ(2)

2 +
1

4
Z−1(ϕ)πχ(2)

2

)

= − 1

2κ2

1

(d− 2)2
√

γ

(
RijRij + (∂iϕ∂iϕ)2 + Z2(ϕ)(∂iχ∂iχ)2 − 2Rij∂iϕ∂jϕ

−2Z(ϕ)Rij∂iχ∂jχ + 2Z(ϕ)(∂iϕ∂iϕ)(∂jχ∂jχ)

− d

4(d− 1)
(R− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂iχ)2

+

(
�γϕ− 1

2
Z ′(ϕ)∂iχ∂iχ

)2

+ Z(ϕ)
(
�γχ + ∂ϕ log Z(ϕ)∂iϕ∂iχ

)2
)

. (B.8)

Now, the recursion relations tell us that L(4) is given by

(d− 4)L(4) = R(4), (B.9)

which is ill defined in d = 4. This problem is of course well known and it is related to the

breakdown of full diffeomorphism invariance of the Hamilton-Jacobi functional, which in

turn leads to the conformal anomaly of the dual conformal field theory [18]. It was shown

in [17] that the Hamilton-Jacobi approach can be still applied in this case and reproduces

the results of the Fefferman-Graham expansion [6] provided the radial cut-off is related to

the deviation of d from the desired value of 4. In particular, we set

r0 =
1

d− 4
, (B.10)
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and define L(4)|r0 = −2r0L̃(4)|r0, so that

L̃(4) = −1

2
R(4). (B.11)

This then leads to the full counterterm action for d = 4. Namely, dropping again the

subscript 0 from the radial cut-off,

Sct =
1

κ2

�
d4x
√

γ

(
3 +

1

4

(
R− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂iχ

)

− log e−2r 1

16

(
RijRij + (∂iϕ∂iϕ)2 + Z2(ϕ)(∂iχ∂iχ)2 − 2Rij∂iϕ∂jϕ

−2Z(ϕ)Rij∂iχ∂jχ + 2Z(ϕ)(∂iϕ∂iϕ)(∂jχ∂jχ)− 1

3
(R− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂iχ)2

+

(
�γϕ− 1

2
Z ′(ϕ)∂iχ∂iχ

)2

+ Z(ϕ)
(
�γχ + ∂ϕ log Z(ϕ)∂iϕ∂iχ

)2
))

. (B.12)

This expression does not quite agree with the one given in (26) of [32], which we believe is

incorrect.

B.1 Asymptotic expansions

The above recursive solution of the Hamilton-Jacobi equation, implies that the canonical

momenta take the form

πij = π(0)
ij + π(2)

ij + (−2r)π̃(4)
ij + π(4)

ij + . . . , (B.13)

and similarly for the dilaton and the axion, obtained by differentiating Hamilton’s principal

function w.r.t. the corresponding induced field. The form of these expansions implies in

turn that the induced fields admit the asymptotic expansions

γij = e2r
(
g(0)ij + e−2rg(2)ij + e−4r

(
−2rh(4)ij + g(4)ij

)
+ . . .

)
,

ϕ = ϕ(0) + e−2rϕ(2) + e−4r
(
−2rϕ̃(4) + ϕ(4)

)
+ . . . ,

χ = χ(0) + e−2rχ(2) + e−4r
(
−2rχ̃(4) + χ(4)

)
+ . . . , (B.14)

where the dots denote subleading terms that are unambiguously determined in terms of

the terms shown. These are precisely the well known Fefferman-Graham expansions [6].

The coefficients in these expansions can be easily deduced from the expressions for

the canonical momenta we obtained in the previous section. In particular, inserting the

asymptotic expansions for the induced fields in the expressions (2.6) for the canonical

momenta on the one hand, and in the above expansions of the momenta on the other and

comparing the two determines at second order

ϕ(2) =
1

4

(
�(0)ϕ(0) −

1

2
Z ′(ϕ(0))g(0)

ij∂iχ(0)∂jχ(0)

)
,

χ(2) =
1

4

(
�(0)χ(0) +

Z ′(ϕ(0))

Z(ϕ(0))
g(0)

ij∂iχ(0)∂jϕ(0)

)
,
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g(2)ij = −1

2

(
R[g(0)]ij − ∂iϕ(0)∂jϕ(0) − Z(ϕ(0))∂iχ(0)∂jχ(0)

)

+
1

12
g(0)ij

(
R[g(0)]− ∂kϕ(0)∂

kϕ(0) − Z(ϕ(0))∂kχ(0)∂
kχ(0)

)
. (B.15)

Comparing the logarithmic terms gives

− 1

κ2

(
h(4)

ij − Trh(4)g(0)
ij
)

= lim
r→∞

1√
γ

π̃(4)
ij = lim

r→∞

1√
γ

δ

δγij

�
d4xL̃(4),

− 4

κ2
ϕ̃(4) = lim

r→∞
1√
γ

π̃ϕ(4) = lim
r→∞

1√
γ

δ

δϕ

�
d4xL̃(4),

− 4

κ2
Z(ϕ(0))χ̃(4) = lim

r→∞
1√
γ

π̃ϕ(4) = lim
r→∞

1√
γ

δ

δχ

�
d4xL̃(4), (B.16)

which can be easily evaluated explicitly using the above expression for L̃(4) but we will

not need these expressions here. Finally, the O(e−4r) terms lead to the expressions for the

renormalized one-point functions in the presence of sources, namely

〈Oϕ〉ren =
1
√

g(0)
πϕ(4)

= − 4

κ2
ϕ(4) −

2

κ2
ϕ̃(4) +

1

2κ2

(
−g(2)

ijD(0)iD(0)jϕ(0)

−
(

D(0)
ig(2)ij −

1

2
D(0)jTr g(2)

)
D(0)

jϕ(0) + �(0)ϕ(2)

−1

2
Z ′′(ϕ(0))ϕ(2)g(0)

ij∂iχ(0)∂jχ(0) +
1

2
Z ′(ϕ(0))g(2)

ij∂iχ(0)∂jχ(0)

−Z ′(ϕ(0))g(0)
ij∂iχ(0)∂jχ(2)

)
, (B.17)

〈Oχ〉ren =
1
√

g(0)
πχ(4)

= − 4

κ2
Z(ϕ(0))χ(4) −

2

κ2
Z(ϕ(0))χ̃(4) −

2

κ2
Z ′(ϕ(0))ϕ(2)χ(2)

+
1

2κ2

(
Z ′(ϕ(0))ϕ(2)�(0)χ(0) − Z(ϕ(0))g(2)

ijD(0)iD(0)jχ(0)

−
(

D(0)
ig(2)ij −

1

2
D(0)jTr g(2)

)
D(0)

jχ(0) + Z(ϕ(0))�(0)χ(2)

+Z ′′(ϕ(0))ϕ(2)∂iχ(0)∂
iϕ(0) − Z ′(ϕ(0))g(2)

ij∂iϕ(0)∂jχ(0)

+Z ′(ϕ(0))∂iχ(2)∂
iϕ(0) + Z ′(ϕ(0))∂iχ(0)∂

iϕ(2)

)
, (B.18)

〈Tij〉ren = − 2
√

g(0)
π(4)ij

=
2

κ2

(
g(4)ij −Tr g(4)g(0)ij

)
+

1

κ2

(
h(4)ij − Tr h(4)g(0)ij

)

− 1

κ2

(
Tr g(2)g(2)ij − Tr (g(2)

2)g(0)ij

)

+
1

2κ2

(
D(0)kD(0)(ig(2)

k
j) −

1

2
�(0)g(2)ij −

1

2
D(0)iD(0)jTr g(2)

−2∂(iϕ(0)∂j)ϕ(2) − Z ′(ϕ(0))ϕ(2)∂iχ(0)∂jχ(0) − 2Z(ϕ(0))∂(iχ(0)∂j)χ(2)
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−1

2
g(2)ij

(
R[g(0)]− ∂kϕ(0)∂

kϕ(0) − Z(ϕ(0))∂kχ(0)∂
kχ(0)

)

+
1

2
g(0)ijg(2)

kl
(
R[g(0)]kl − ∂kϕ(0)∂lϕ(0) − Z(ϕ(0))∂kχ(0)∂lχ(0)

)

−1

2
g(0)ij

(
D(0)kD(0)lg(2)

kl −�(0)Tr g(2) − 2∂kϕ(0)∂
kϕ(2)

−Z ′(ϕ(0))ϕ(2)∂kχ(0)∂
kχ(0) − 2Z(ϕ(0))∂kχ(0)∂

kχ(2)

))
. (B.19)

Note that in some places we have symmetrized indices with weight one, i.e. (ij) ≡ 1
2 (ij+ji).

It can be easily checked that the expression for the one-point function of the stress tensor

evaluated at zero dilaton and axion sources completely agrees with the expression in (3.12)

of [33].15

The holographic Ward identities can now be derived as in the main body of the text in

the case of IHQCD. Namely, the second of the equations in (2.18) holds order by order in the

expansion of the Hamilton-Jacobi functional in eigenfunctions of the dilatation operator.

In particular, we have

D(0)
i〈Tij〉ren + 〈Oϕ〉renD(0)jϕ(0) + 〈Oχ〉renD(0)jχ(0) = 0. (B.20)

Moreover, considering the transformation of the renormalized action under the asymptotic

diffeomorphisms that leave the Fefferman-Graham expansions form-invariant leads to the

trace Ward identity

〈T i
i 〉ren = A(g(0), ϕ(0), χ(0)), (B.21)

where

A(γ, ϕ, χ) =
1

8κ2

(
RijRij+(∂iϕ∂iϕ)2 + Z2(ϕ)(∂iχ∂iχ)2−2Rij∂iϕ∂jϕ−2Z(ϕ)Rij∂iχ∂jχ

+2Z(ϕ)(∂iϕ∂iϕ)(∂jχ∂jχ)− d

4(d− 1)
(R− ∂iϕ∂iϕ− Z(ϕ)∂iχ∂iχ)2

+

(
�γϕ− 1

2
Z ′(ϕ)∂iχ∂iχ

)2

+ Z(ϕ)
(
�γχ + ∂ϕ log Z(ϕ)∂iϕ∂iχ

)2
)

, (B.22)

is the conformal anomaly.

As a final comment, we observe that since

L̃(4) = −1

2
R(4) =

1

2

√
γA, (B.23)

the terms involving h(4)ij , ϕ̃(4) and χ̃(4) in the above expressions for the renormalized one-

point functions can be ignored since they are scheme dependent and they can be removed

by adding the finite counterterm

− 1

4

�
d4x
√

γA. (B.24)

15In making the comparison one should keep in mind that Rthere
ijkl = −Rhere

ijkl . Moreover, we believe

that there are two typos in (3.12) of [33]. Namely, in the third line of (3.12), −Tr g(2)g(2)ij should read

Tr g(2)g(2)ij , while in the beginning of the fourth line RikRk
j should read 2RikRk

j .
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