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1 Introduction

Flux vacua [1] find many interesting applications in String Theory, ranging from holo-
graphic flows dual to non (super)conformal boundary theories [2-8] to moduli stabilization
in phenomenologically viable models with open and unoriented strings and otherwise [9].
More recently unexpected implications of the AdS/CFT correspondence [10-13] in con-
densed matter physics [14, 15], astrophysics [16, 17] and gravity at a Lifschitz point [18]
have attracted a lot of attention.

Due to the presence of fluxes, fields belonging to different sectors tend to mix with one
another, compatibly with the residual (super)symmetry. Resolving the mixing and finding
the spectrum of excitations is extremely laborious [19-21] as witnessed by the enormous
effort needed to accomplish the task for the metric and active! scalar modes in holographic
flows described by the Papadopoulos-Tseytlin (PT) ansatz [22, 23, 26, 27]. Our aim is to

!By active we indicate those scalars with a non trivial profile in the background. All the other
(pseudo)scalars are said to be inert.



extend this kind of analysis to the vector sector [19-21, 28, 29]. To this end, we will start
by studying the fate of bulk symmetries of the Type IIB supergravity solutions. Although
we will mostly adopt a 10-d perspective, we will also present the 5-d viewpoint, that has a
more direct applicability in Holographic Renormalization [20, 21, 30-36] and Holographic
QCD [37-41].

Symmetries can be divided into three classes

e Exact Symmetries: not only the metric admits Killing vectors but also fluxes are
invariant [19-21, 28, 29].

e Partially Broken Symmetries: Metric invariant, some fluxes are not

e Broken Symmetries: Metric and fluxes only asymptotically invariant [22, 23, 42, 43]

e~

The PT ansatz [5] enjoys SU(2) x SU(2) isometry for arbitrary choices of the ‘radial’
functions. On the contrary, the U(1)g, associated to shifts of the coordinate 1, is broken
except for very special cases. The breaking is spontaneous from the bulk viewpoint, i.e.
the would-be massless vector field becomes massive after ‘eating’ a Goldstone boson. The
Stiickelberg formalism for the gauging of axionic shift symmetries is particularly convenient
in this respect [19-23, 28, 29, 42, 43]. Except for some very general remarks, we will neither
have much further to say about broken symmetries and massive vectors nor discuss at all
massless vectors related to harmonic forms [7] and to probe branes [37]. The latter give rise
to chiral ‘flavor’ symmetries (breaking) and mesons. The former to baryonic symmetries.

The plan of the paper is as follows. In section 2 we describe the 5-d Lagrangian
governing the dynamics of gauge fields and their mixing with would—wions. Next, in
section 3, we check that the PT ansatz indeed admits full SU(2) x SU(2) symmetry, in
that not only the metric but also the other background field (strengths) are invariant. In
section 4, we identify the bulk vector fields that remain massless by means of an ansatz
for the fluctuations of the metric and p-forms, that diagonalizes the coupled equations.
Finally, in section 5 we illustrate the procedure in the simple case of holographic flows and
other flux vacua with F3 only, which are invariant under ). Specifically we study the MN
solution [4] associated to wrapped D5-branes, i.e. ‘fractional’ D3-branes. Our conclusions
and summary are contained in section 6.

2 Vector fields in holographic renormalization

The 5-d Lagrangian describing vector fields and their possible mixing with inert
(pseudo)scalars e.g. axions reads [19-21, 28, 29]

1 i vi 1 i j
Log= —4/cijFWFM Iy QhAB(auﬂA — M AL (0487 — MP A (2.1)

The gauge kinetic function KC;; and the axion metric hap may depend on the (active)

scalars, while, in the present parametrization MZA are constant mass parameters.”? The

In general, after gauging some isometry of the scalar metric G,p(¢), covariant derivatives are given by
D¢* = 9¢" + K (p)AY, where K¢ are Killing vectors i.e. V&KL (4) + V5K (¢) = 0,Vi. Here we focus on
the gauging of axionic shifts §34 = M af.



Lagrangian is invariant under gauge transformations of the form
SA'=0a' |, o4 = MAd (2.2)
The square mass matrix
MZ(9) = hap M MP (2.3)

is semi-positive definite. Zero eigenvalues correspond to exactly massless vectors, associated
to isometries or to harmonic forms present in the background solution. Non-zero eigen-
values correspond to massive vectors and broken symmetries. Introducing gauge invariant
combinations for the latter

B, = Al - (MIS)“M{‘hABaMBB (2.4)
and denoting by Aff the former yields

1 %, vj 1 i vj 1 i j
Lo= = Kig@F P = Ki(0)F, 7% +  MEG)B,BY  (25)

After diagonalization, one finds a collection of decoupled vector bosons® each described by

1 1
Lo == KOV FuwF" + , MY (@) A A" (26)
where K(¢) is the resulting gauge kinetic function and M (¢) is the possibly vanishing mass.

Putting the kinetic term in canonical form one has [19]

LK"  AK 1K\ M?
2
_ _ 2.
M=o Tk 4<IC> K 27)
where primes denote derivatives wrt the holographic radial variable. Clearly M? = 0

for bulk vector fields associated to unbroken boundary currents (exact global symmeries),
while M2 # 0 for broken symmetries. In most if not all known cases [19]

M%g = —24" (2.8)

Quite remarkably but without a clear explanation, the above relation has been verified
for (transverse) vectors fields in all known solutions: Coulomb branch flow with SO(6) —
SO(4) x SO(2) [19-21, 28, 29], GPPZ flow SO(6) — SO(3) x U(1)i [19-21], KT (and
partially KS) solution with (broken) U(1)r R-symmetry [22-25].

3 Field equations and PT ansatz

To set the stage for our analysis, let us now briefly recall Papadopoulos and Tseytlin (PT)
ansatz for flux vacua in Type IIB supergravity and its symmetries. The main motivation
behind PT ansatz is to identify a subset of fields that form a consistent truncation of Type
IIB supergravity and allow to study flux vacua with reduced or no supersymmetry at all.

3 At the quadratic level this is true for non-abelian symmetries, too.



The reader familiar with Type IIB supergravity and the PT ansatz can skip the following
part and go directly to section 3.2.
In the Einstein frame, Type IIB supergravity equations read

1 1 1 . N
Ryn =, 0n¢On¢ + 2€2¢3MX3NX + 96GMPQKLGNPQKL + (3.1)
1 - A 1 _ 1 . N _
46¢FMPQFNPQ + 46 ¢HMPQHNPQ — 48gMN[e¢FLpQFLPQ +e ¢HLPQHLPQ]
1 ~ - 1
Vng = €2¢8MX6MX + 126¢FLMNFLMN ~ 19 6_¢HLMNHLMN (3.2)
1
VM (e220yx) = —66¢HLMNFLMN (3.3)
A 1
VM(e?Fynp) = GGNPQRSHQRS (3.4)
_ ~ 1
VM(G d)HMNp—ed)XFMNP) = _GGNPQRSFQRS (35)
~ 1 ~
GryoMs = 120€M1...M5M6...M10GMG"'M1° (3.6)
where
F3 = F3 — xH;j F5 = F5 + BoFj (37)
with
F1 :dX F3 :dCQ F5 :dA4 H3:dB2 (38)

3.1 PT ansatz

The consistent truncation of 10-d Type IIB supergravity found by Papadopoulos and

Tseytlin is based on the following ansatz.
e Metric
ds2, = (2rl)—a(w) (62A(u) di - dz + N du2> LN [em(u)+g(u) (¢2 +¢3)
+ er(w—9w) (GJ% + (D%) + 41166”(“)1(“)&)%} (3.9)

where u denotes the holographic radial variable, the functions A, p, x, g depend on u,
and the ‘invariant’ one-forms read

e1 = db, eg = —sinfdyp

01 =wi —a(u)er, w2 =wy—a(u)ey, &3=ws— cotbey

w1 = sin ¢ sin éd@ + cospdf, wy = —sintpdh + cosp sin édgb

w3 = dip + cos Odp (3.10)

e NS-NS dilaton and R-R axion

¢=¢(u) , x=0 (3.11)



e NS-NS 3-form

Hs = h2(u)@3/\(w1 Ner—+ wo A 62) + du N [h'l(u) (wl Nwo + e A 62)
+hy(u) (w1 Aea —wa Aer) + hi(u) (—wi Aws +e1 Aes)] (3.12)

where ’ denotes derivative wrt u. Since dH3 = 0, one has H3 = dBsy with

By = hl(u)(el Ney 4+ wi A wQ) + hg(u)(wl N ey —wa A 61)
—i—hg(u)(—wl Nwo +e1 N 62) (3.13)

e R-R 3-form

N5
s = 45 {@3 A (w1 Awa +e1 Aeg) —b(u)(wr A ey —wa Aer)]

+b' (u)du A (w1 Aep +wa Aeg)} (3.14)

since dF3 = 0, one has F3 = dCy with

N ~
Cy = 45 [Y(e1 A ez + w1 Awz) + b(u)(wr A e +wa A e) + cos B cos Odpdp] (3.15)

e R-R self-dual 5-form
Gs =G5+ %G5 with G5 = K(u)er Aea Awy Awy Aws (3.16)
where G5 = G5 + By A Fy with G5 = dC,.
Integrating Gs = dCy + By A F3 over a closed ‘internal’ 5-d section at fixed u yields
K (u) = N3 + 2N5[hq(u) + b(u)ha(u)] (3.17)

that allows to eliminate K in terms of b, hy, hy and the integers N3 and N3 (i.e. number of
D3- and D5-branes in the UV). The Bianchi identity for Hs yields

(€29 +2a® 4+ e~ 2a* — e729)dhy + 2a(1 — €729 + a?e~29)dhs

dhz = €29 + (1 _ a2)26729 + 2a2

(3.18)
that allows one to eliminate hg, too.

The remaining scalar fields {p,z,g,a,b, ®, h1,ho} are governed by a 5-d effective La-
grangian with (almost) diagonal metric G, (only hy and hg mix with each other) and a
complicated potential that play no role in our analysis.

3.2 Killing vectors

For arbitrary choices of the functions x,g,p, a, ¢,b, hy, ha, (hs, K) of the radial coordinate

P

u, the metric and p-forms are invariant under SU(2) x SU(2) isometry generated by the six



Killing vectors &,

£L =6 =€%(0,0,0,0,0,—1,0,—icot 6,0,icscb)
. =& = e %(0,0,0,0,0,1,0,—icot 6, 0,7 csch)

& =& = (0,0,0,0,0,0,0,1,0,0)

£, =6 = ¥ (0,0,0,0,0,0,—1,0, —icot §,icsc é)

£ =t = (0,0,0,0,0,0, 1,0, —i cot 0, i csc é)

&3=¢ = (0,0,0,0,0,0,0,0,1,0) (3.19)
Notice that &, have only components in the internal directions, i.e. ¢¥ = 55\/[ £ with
M=1,...,10 and i = 6,...,10, and the contra-variant components displayed above only

depend on the internal ‘angular’ variables, i.e. augM =0 with = 1,...,5. Although the
metric does not mix the angular variables with the non-compact variables, after lowering
the indices the components of the Killing vector acquire a u dependence due to warping.
Clearly PT preserves Poincare symmetry in the ‘boundary’ space-time directions, too.

It is easy to check that also the following two-forms

e1 Nea=—sinfdf Ndp = dcosO N dp (3.20)
w1 Awy = +sinfdd Adp = —dcosd A dg (3.21)
w1 A e14wa A ey = (sin ¢ sin 0d@ + cos 1hdf) A df + sin 0(sin 1df — cos 1 sin 0dp) A de
(3.22)
w1 A eg—wa A eq = — sin 0(sin ¢ sin Od@+cos 1pdf) A de + (sin 1pdf — cos 1 sin 0dg) A d
(3.23)

as well as the one-form
@3 = dip + cos 0d@ + cos Odp (3.24)

P

are SU(2) x SU(2) invariant, in the sense that L¢(...) = 0.4
As a consequence, all background field-strengths are invariant i.e.

LeH3=0, LeF3=0, LG5=0 (3.25)
Moreover, since
Le, By =0 (3.26)
one also has
Le,F3=0, LgGs5=0 (3.27)

while, in the chosen gauge,
Le,Co#0 (3.28)
4Lie derivatives act according to

Ny..Ng _ L Ni..N, Ni..N L Ny.L.N N;
Ly Ty ..., " =00y .. My, ‘”rE T'ny L., “Or;, v = Ty, 10Lv.

4 J



By a change of gauge 0Cy = d)\lc we expect
Le,Cy=0 (3.29)

Finally, though rather obviously, L¢, ¢ = 0, L¢,x = 0.

While admitting SU(2) x SU(2) isometry, the PT ansatz generically ‘breaks’ the abelian
isometry associated to the vector field £M 9y, = 0/0y. The latter may be identified with
the ‘anomalous’ U(1) R-symmetry of the dual N'=1 SYM theory on the boundary. In the
bulk it is broken to Zon by the background 3-form and 5-form and then broken to Zs by
non-perturbative effects (string or D-brane instantons, depending on the choice of wrapped
branes). As discussed in section 2, the bulk counterpart of the anomalous divergence of the
R-symmetry current is a Higgs or rather Stiickelberg mechanism [42], whereby a would-be
massless vector field eats an axion and becomes massive. This effect has been studied
in some details in [22, 23] in the case of the KT background (a singular ‘relative’ of KS
solution), confirming the expected value for the ‘mass’ predicted by [19]. For the case of
MN solution, some considerations about the required axion can be found in [4, 43].

3.3 Discrete symmetries and closed subsectors

There are two Z symmetries and their product that allow to truncate Type IIB field
equations in D = 10 to closed sets of fields mixing only with one another. The first is
world-sheet parity 2. The second is fermion parity in the L-moving sector (—)fZ, which is
S-dual to Q i.e. (—)f2 = SQS~!, where S exchanges I3 and H3 and sends 7 = x +ie~® to
—1/7. The Einstein-frame metric and the dilaton are invariant under both Q and (—)z,
while the action on the other bosonic fields is

Q ()
Y — —
By - +
Cy + -
Ay - -

Later on we will focus on the subsector invariant under 2. For the PT ansatz, this

means

MN solution for wrapped D5-branes [4] belongs to this class, i.e. it is invariant under .
Its dual wrapped NS5-brane solution belongs to the class invariant under (—)f*. Standard
AdSs x S5, i.e. near-horizon D3-branes, is invariant under (—)f2€. Finally KS and KT
solutions (related to the conifold) do not preserve any of the above discrete symmetries

and are thus more involved to study [26, 27].

4 Exact symmetries and massless vectors

e~

In this section, we would like to discuss the fate of the SU(2) x SU(2) isometry, that
should correspond to the global ‘flavor’ symmetry of the boundary theory, possibly acting



trivially on the lowest states relevant in the deep IR. Even if from the vantage point of the
holographic duality, the presence of this isometry might be annoying, the analysis is quite
general and applies to any isometry in any flux compactification.

We will find that the Killing vectors generating S/U\/(2) are associated to truly massless
vectors in the bulk that correspond to an exact global ‘flavor’ symmetry of any solution
based on PT ansatz. For the first SU(2) factor the situation is subtler, at least in the case
of MN solution [4].

First of all notice that invariance of the metric under isometry generated by a Killing
vector éM reads

Legun = Vuén + Vnéu =0 (4.1)
that implies
VM =0 (4.2)
as well as 1
Vuén = 5 (Vumén — Vnénr) (4.3)
and
ViVuén = —Runpxé™ (4.4)

Invariance under diffeomorphisms suggests the existence of a trivial massless zero-mode
for the metric fluctuations

dairgmN = VBN + VNS (4.5)

Taking Oy = a(x) &
dairgmN = EnVa+EuVna (4.6)

It suggests an ansatz for the metric fluctuations of the form

OphysgMN = —ENAn — EMAN (4.7)

with €M Ay = 0 (ie. dgF = 0) and LeAy =0, since Ay = Apr(x) is to be independent
of the five internal coordinates the Killing vectors act on. Gauge invariance under 5A§\91) =
—Vara would then result from general covariance and should imply massless-ness of the
vector field Ays. However, due to the presence of fluxes in the background, the story is not
so simple. The metric fluctuations mix with p-form fluctuations, which we turn now our
attention onto.

Let us then consider the general case of an n-form X,,, whose background (n + 1)-form
field strength Y;,+1 = dX,, is invariant under some isometry generated by a Killing vector
§

LeYn =iedYnp +d(igYny) =0 (4.8)

Thanks to Bianchi identity dY;,+1 = 0 one has (locally)
ieYny1 = dZ5_, (4.9)

where ngl is a (n — 1)-form defined up to an exact form 5Z§71 = dW,,_s.



Under a diffeomorphism generated by vM = ag¢M

Opi Xn = igYni1 + d(@icX,,) = adZ5_ | + d(aieX,) = da A Z5_ | +da(ic X, — Z5 )]
(4.10)
The last term can be cancelled by a gauge transformation of the n-form X,,. This suggest
that the correct ansatz for the ‘massless’ vector Ay associated to the coupled fluctuations
of the metric and n-form X, along £ be of the form

6Xn = A1 NZ5 | (4.11)

In this way gauge invariance under dA4; = da would not only be a consequence of general
covariance but also of the n-form gauge invariance. For the fluctuations of the (n+ 1)-form
field-strength Y,,41 one then finds

§Ypi1 =dANZS

n—1

—ANAZS | =dANZE | — AL NigYo (4.12)

In principle the procedure applies to any background n-form in PT or even more
general flux vacua. The analysis can be performed in quite general terms but it drastically
simplifies in backgrounds where F5 = 0, H3 = 0, F} = 0, thanks to invariance under world-
sheet parity €2, or else where 5 = 0, F3 = 0, F; = 0, thanks to invariance under (—).
In both cases mixing between Cy and Bs are excluded, and one can safely set A4 = 0 and
even d¢ = 0, as we will see.

Henceforth we will focus on the sub-sector invariant under €2 i.e. Cs,g,¢ and set

By, A4, x to zero both in the background and in the fluctuations.

4.1  invariant massless vectors (i.e. F5 =0 and H3 = 0)

Taking into account that L¢F3 = d (i¢F3) = 0, for any exact Killing vector, one can locally
write
ie F3 = dp§ (4.13)

that suggests the following combined ansatze for the physical fluctuations
SgMN = AMeN 4 ANeM 50y Ny = Apply — Anidy, (4.14)
or, equivalently, for the latter 6Cs = Ay A ,u?v so that
5F3 = déCy = dA A — A NicFy (4.15)

Setting 0By = 0,6x = 0,044 = 0 as well as 0¢ = 0, dg,, = 0,0g;; = 0 one has
gMNGSgrny =0, ie. 6\/||g|| =0.

Moreover, dgyny = —Apmén — AnEas so that
6gui = _A}Lgi = 5gi,u (4'16)
while
5Ci = Aus = —8Cy, (4.17)



and

0Fij =0

§F,p =0

0Fuij = —Apu <3m§ - 3j/~6§>

6F i = DAy = 0y Au) 11§ — (A0, — 4,015 (4.18)

4.1.1 Dilaton equation (consistency check)

Let us first check that it be consistent to set d¢ = 0. Using the 3-form ansatz, one finds

5F2 = 5FLMN FLMN + 3 FLMN5gLPFpMN
= F9%§Fyjp + 3F"“* §F, 1, + 6F, 109" F;7*
— _34, Fk (ajug - aku;f) + 609U F Bk (4.19)
For a solution of the PT kind one has Fuijijk =0,4i=206,...,10. Also one obtains

Fuik (Bjui — 8k,u§> = 0 for each one of the six Killing vectors &,. Therefore 6F? = 0,
consistently with the ansatz d¢ = 0.

4.1.2 3-form equation

Let us focus on the 3-form equation

1
s <VM <\/ge¢FMNP)) _ y Ons (\/ge¢ [5gMLFLNP+5gNLFMLP
g
4ogPLEMN gMLgNKgPQ(;FLKQ] ) (4.20)
Decomposing into space-time (v = 1,...,5) and internal indices (j = 6,...,10) one

has
e Equations N =v, P=p
1
5 (Var (vae?F)) = our (Vae? [SgMEEL + g P 2
+0gP MY 4 gME g R PR FLq]) =0 (4.21)

Keeping only non-vanishing components yields

1 v v v
g0 (Ve (69BN 5PN o Mg g P | ) =0 (422)

Plugging the anstaze one eventually finds

0 { /o [ A€ F 5+ APESF™ 4 g g (1 Fag = AnDoisf + AgOrii) |} = 0
(4.23)

,10,



where fyn = O AN — OnvApy and +/§ denote the dependence of /9 on the internal
coordinates. Finally, using i¢F3 = dpu¢ one arrives at the following constraint for p

0=0 <\/g;/) FP = VoM =0 (4.24)

One can check that this is satisfied for all j¢ in any background of the PT kind.
Anyway, we expect that it should always be possible to satisfy the constraint by
adding to p¢ an exact form dnt, where n¢ is an appropriate function.

Equations for N =i, P =j
. 1 i, A ,
) (VM <\/ge¢FM”)) _ \/gaM <\/ge¢ [5gMLFLU +5gzLFMLj
+og? M 4 Mg R PO FLrg]) =0 (4.25)
Keeping only non-vanishing components yields
1

\/gaM (\/ge¢ [5gMLFLij + 8¢ M 7 — g7 FM 4 gMLgikgﬂ5FLle =0 (4.26)

Plugging the anstaze one eventually finds
¢
e

O 0n (Ve R + ey - 0

that is satisfied after using L¢F3 = 0 i.e. igF3 = dpug, V™ = 0 and the background
3-form equation 0y, (v/§F,™) = 0.

Equations for N = v, P =1
5 <VM <\/96¢FM”1>> = ;gGM (\/geq5 {5gMLFL”l +6gvEFM ]

+6g!tFMY +gMLg”Kng6FLKQ]> =0 (4.28)
Keeping only non-zero components yields

1 ,
+6¢8Z‘ <5gkuikl + gikg”“gljéFk“j> . (4.29)

Plugging in the ansatz for the fluctuations yields

1 v v v j

g0 (Ve [ AR + A€ EN 4 0G0 (fyap = 48" Fony
AN Fopy)]) + €00; (AVEF P 4 g g gl (— A, €7 Fp)) =0 (4.30)
After various cancellations, one finally arrives at the Dynamical Equation for the
vector fields

O (Voe? 29" fnitk) = 0 (4.31)

— 11 —



When ,ué = e~ %/2¢", this further simplifies into

giau <\/ge¢/2g“pg”>‘fp>\> =0 (4.32)
which neatly displays the correspondence between bulk 5-d massless vector fields and exact
Killing vectors.

4.1.3 Einstein equations

It is straightforward but very laborious to show that Einstein equations lead to the same
results, i.e. the very same dynamical equation for A,. For simplicity we will restrict our

attention on the case in which ,u?w =e %€ ie. k3 = d(efg)\g) where A¢ = gy nEMdaY
Let us start with the source term

1 1
OSun = 46¢ (5FMPQFNPQ + 6FnpoFute + 259PLFMPQFNLQ) ~ 48 e?SgnnF?

11 ¢ ®
= [62 FyPe <f[MP5Q] —ez A[MFPQ}LgL) +e? (APeh + AREP) FrypoFi®

1
+(M < N)] - 48€¢69MNF2 (4.33)
Defining
1 6 (.—%.pP
huar = Viéar = Varée = o (996 — Onetr) + e (€ 26 Fopur) (4.34)

the first order fluctuation of the Ricci tensor reads
ORMN = —; (V20gmn — VEVadgnr — VEV NSguL + ViV ndgr) (4.35)
= —;VL Enfur +Emfne + €0 (VAN + VNAy) + Avhng + Anhasr]
= ;63 [fLMVL (67§§N> + fLnV* (673&\4)} + ;efg [ngL <€§fLM)
+Eu Vv <€€fLN)} - ;vaL (VAN + VNANM) + ;VL (Anhin + Anhrar)

Moreover one finds

1
2

1
2

"‘ivL (ApénOLd — Ap€LOng + AnEnOro — ANELOM®)

$ "
VE(Ayhpn+Anhiy) = VE (AM€2 P Fpry + Ayez §PFPLM) (4.36)

1 ¢ 1 1
= 2€2§PFPLNVLAM - 4€¢£kaLPFLPNAM - 8€¢69MNF2

4
+ 007" (A + Axtar) — ,€°V1 (Ao + AnDaro)

and also

1 1 1
- 46¢£kaLPFLPNAM = —4€¢FNPQ£LA[MFLPQ} + 4€¢ (APE" + AREP) FypoFni?
(4.37)

- 12 —



Simplifying terms in the left and right hand side yields

FSux = ye N st + (M o N) (4.38)
and
ORun = ;egfLMvL (efgﬁN) + ;efgﬁNVL <€gfLM) - ;5LVLVMAN (4.39)
+;€ngFPLNvLAM + iaLQSVL (Amén) — legLVL (AMON®) + (M < N)

In particular for M = p and N = i, the remaining terms in the source fluctuations are

550 = e (;d& - §;> (VuAu — ViuA,) (4.40)

while the remaining terms in the Ricci fluctuations read

;e‘é Fiar V(e ben )+ (MoN) = 4e (VA - 9,4 (€ - 6') (4.41)
—;gLVLVMANJr(MHN) ie 26 (V, Ay +V,A )—i—le 25“5] K AyByugri, (4.42)
;e‘ﬁgprLNvLAM + (Mo N) =
e 4’{ ¢ &V LA, + gzv A, < ¢ Ayl + gj 7k A &Lg;“)}, (4.43)
W07 () + (01 o W)= (06T, + (66 A, ) (4.44)
and finally

¢

1 1 / / 1 ! !
- VLo + 01 = N) = F (s - [dads) e
After a number of cancellation one eventually finds
08 = 0R; (4.46)

when the 3-form equations are satisfied, showing that the fluctuations ansatz then satisfies
Einstein equations, too.

It is easy to check that the other components (7, j) and (u,v) are satisfied as well. For
brevity, we refrain to present the details here.

4.2 One-forms associated to Killing vectors

For completeness and later use, let us display in the following the expressions of the
one-forms associated to the Killing vectors in a generic PT background. Setting® Ae =

®The constant factor N5 ! is inserted for later notational convenience.

,13,



Nglgijéidxj, one has

1 ~
A = elp—g+ (a + 4629) do + 4@“” gtz (cosz/} + 4 cos 0 sin Tﬂ)da
jeiP—9—6p—a <66p+2xa2 — 94 462(9+3P+$)> cos 0 sin fdg

+  elem9=bp—e [ieg cos 0 sin 0 4 P72 (sin ) — i cos 1) cos 6) sin 5] dg

= >—‘>-l> >—‘>J>’—‘

+ e ~OP=T sin G (4.47)
1 1 . ~
o 467“"79er (a® +4€) db — 467“"79‘%&(0081/) — i cosfsiny)db

_L je P9 —bp— [erHxa? —ef + 462(9+3p+”3)] cos 0 sin Ody
+ e lem9Opm [eg cos 0 sin § — 57727 (cos 1) cos O — i sin 1)) sin é} dp
+ ie” TP gin Ody (4.48)

e® 9 sin 1 sin 0d6 + [ T cos? O+ et (a2 + 4629) sin? 9] de

Hq; R R

~ 1
+ 4 (6_6”_”5 cos 0 cos 0 + e 9a cos 1 sin 0 sin 9) do + 46_617_’3 cosOdyp  (4.49)

1 ) " ‘
A= 4 Y79 % a(cos b + i cos O sin1p)df — 4614,0*9+93d9

1 .- ) N
4+ eip—g—bp— [e6p+2ma(sin 1 — 1 cos ) cos @) sin O + ie? cos O sin g] dop

1 .- -
ie"PITOPE (e 4 0P gin(25)dp + 416“’076})7:’3 sin 0dy (4.50)

. - 1 .- _
As = — e P79 %q(cos ) — icos O sin)dd + 46_“"_9+xd0

»—thu »—too »—\»J>

|
~.
('D

—ip—g—bp—a [(e6p+2$a(cos ¥ cosf — isin)sinf — €9 cos O sin é] dp

. 5z L. i 5
+  deTIPTITOP (9 — OPFRY) cos O sin 0d + 41167@@76})71 sin O (4.51)

>~
[«
|

gasmipsmﬂdﬁ—}—ll{ bp= mcos@cosé—}—emfgacoswsinﬂsiné} dp

»Jk»—u& ok

- ~ 1 5
[6761)733 cos? § 4 e® 9 sin? 9} dp + 4676})71 cos Odip (4.52)

_l’_

Then using Ngl’igFg = duf one finds

1 i [e¥f —e™(f—1)] db — leei‘pb(comp + i cos O sin1p)df
+§13 [zei‘p(f — 1)sin(20) — 2ie’? cos O(f — 1) sin 0] dy
le e [z cos B sin 6 + b(sin v — i cos 1 cos ) sin 9} dp
—leze ? sin fdy) (4.53)
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142 i [e - e_iwf] do + lee_wb(cos Y — icos 0sin)df
+§13 [ie™™(f —1 — 2ie” % cosO(f — 1) sinf] dip
leze e {cos 0sin @ + b(isiny — cos 1 cos ) sin 9} dp
leze  sin o) (4.54)
ibsmw sin 0d6 + ! [(f —1)sin? 6 + (— cos? 0 — f sin? 6?)] dy
+i(—cos€cos€ - bcos¢sinﬁsin§)d¢ - Coiechb (4.55)
1 .- . - el?
pa =, ¢?b(cos Y + i cos O sina))dl — 4 do
iei‘ﬁ [b(sin ¥ — i cos 1 cos B) sin @ + i cos O sin 9? dyp + leiei“B sin Ady) (4.56)
s = i ~iPp(cos 1) — i cos O sineh)dd + :{3 df (4.57)
leze @ {b(cos 1 cosf — isin)sin @ — cos O sin é} dy + leiefi‘ﬁ sin Ody
e = leb sin 1) sin 0d + 4 (Cos 6 cos 6 + bcos 1 sin 0 sin 0)dy
ledcp + le (4.58)

which are valid in any PT background. We also defined f = 4e%9 + a?.
For MN background [4] a compact form for u¢ in terms of the (rescaled) KV obtains

H(1)i

H6)yi —

(f —1) €™ (09 +icosfsin65?)
(f —1)e % (5? - icosHsinGé?)

(f —1)sin® 6%

T G T TG

(4.59)

4.3 Scalar products and gauge kinetic functions

The scalar products of the Killing Vectors are diagonal as a result of the SU(2) x SU(2)

symmetry. For SU(2 ) one finds

/ ElgiEld°Q = 2 T3 0apkiae 9 0F2 [2e5PF20(f 1) 4 (€9 4 257H27)] (4.60)

with K1 = kg = 2 and k3 = 1 , while for SU(2) one finds

[ Gilasin = NG R e (o7 4 21) (4.61)

with k4 = k5 = 2 and kg = 1.
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Similarly for the one-forms ,ug, the scalar products are diagonal. For SU(2) one gets

/,ua gzj,ubd5Q = 5¢ 9_3p+§6abnaN5; w3 [(f—-1) (a2 —1) + 2¢9 (2¢9 + e6p+2$)] (4.62)

P

with K1 = kg = 2 and k3 = 1, while for SU(2) one gets

/Ma gz]ﬂdeQ = N27T362 gp(sablia (269 + €6p+2$) (4_63)

with k4 = k5 = 2 and kg = 1, exposing the SU(2) x SU(2) symmetry.
From the above scalar products one can read the gauge kinetic functions for the mass-
less vectors of SU(2) x SU(2) in 5-d. For SU(2) one finds

8

1; 20y ke P79 {(f -1) [4629“ + e (a2 - 1)}

+ [269_617 + 4e* + 2e97% (2e9 + 66p+2x)] } (4.64)

1

1.,
Ksu = ,V 612 + ellull®) =

where the first term is a contribution from the Einstein-Hilbert term, while the second
comes from the F32 in the Type IIB action.® For SU(2), u = e~%/2¢ and one simply finds

8

371'2
Sapkiae 97 (&9 4 2e127) (4.65)

— 2
Kz =V HlIelE =,

SU(2)

The internal volume factor V=5 arises from the Weyl scaling of the 10-d metric Wlth pure

(5)

space-time components so as to have canonical E-H term in 5-d, i.e. 9(10) = Vs 3(u) g -

5 DMassless vectors in MN background

We will now explicitly apply the above analysis to the case of MN solution for wrapped
D5-branes [4]. For simplicity we will focus on the SU(2) factor, for which u¢ = e=#/2¢.

5.1 MN Solution

In MN solution for wrapped D5-branes [4] one has hy = ha = 0 (no D3-branes F5 = 0, no
NS5-branes Hs = 0, x = 0) and b = a. Denoting the radial variable by u, the metric reads

1
ds? = b [dxz + Ns {du2 +e¥ (e +eo”) + | (@ + @+ @32)}} (5.1)
where
2e9 1
e 20 = sinlc; 9’ e* = u coth2u — 4(1 + a?)
2u
“~ Ginhou’ J=dctra (5:2)

5Which is well defined for A4 = 0.
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The RR 3-form flux is given by
N5 .
F5 = 4 {@3 A (w1 Awa +e1 Aea) —a(u)(wr Aeg —wa Ae)
+a' (u)du A (wy Aer +wa Aeg)} (5.3)

The asymptotic behavior of the radial functions in the UV (u — 0) and IR (u — o0)

are found to be

2
alu—0) —1— 3u2, a(u — 00) — 0 (5.4)
¥ (u —0) — u?, e¥(u — 00) = u (5.5)
8 32
f(u—0) —>1+3u2—45u4, f(u — 00) — 4u (5.6)
For later use, notice that
Ng ~
Juv = egéuu y  Gij = e%)g;j , det gyn = 62 e*?e*9 sin? 0 sin’ 0

5.2 Spectrum of massless vector harmonics

As we have seen, in order to find the spectrum of bound-states that are holographically
dual to the massless bulk vectors associated to the three Killing vectors of SU(2), one

should solve 1

V9

There are two cases to consider v = v and v = u.

Duly/ge? ] = 0 (5.7)

For v = u one simply gets
O fi=0 — 0"0pAy—0,0"A; =0 (5.8)

that allows to express A, in terms of the longitudinal component of A.
For v = ¥ one gets

uf™ + Aul\/ g(u)e?/? g M(auA;—a;Au)] =0 (5.9)

%

Setting A; = ay(u)e”? and A, = b(u)e””?® one can solve for a;(u) and b(u). Decom-

posing a;(u) into longitudinal and transverse components according to
ap(u) = aj (u) + ipgar (u) (5.10)

one finds
b(u) = ay (u) (5.11)

that can be set to zero by gauge transformations. The surviving transverse components

then satisfy an equation

Ou(\/g(w)e ?0,al) — e ??p*al = 0 (5.12)

1
Vg(u)
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that is identical to the equation for a canonical massless scalar ®. After setting
d=c "9y (5.13)
the equation is put in canonical form with an effective potential given by
Vet = " + ¢ ~ _u12 in UV (5.14)

Unfortunately due to the ‘pathological’ UV behavior there is no spectrum of discrete states
associate to the bulk massless vectors. For SU(2) the story is similar. This behavior is
analogous to the one found for the fluctuations of the metric in MN solution [4]. Indeed,
the transverse traceless components of the metric fluctuations hg;T(u, z) = €;§(p) fp(u)eP®
decouple from the rest and satisfy a free massless scalar equation of the form”

(02 +4A'8, — 2 p?] fp(u) = 0 (5.15)

For MN solution [4], the relevant equation has been studied in [26, 27| and shown to
have a continuous spectrum without a mass gap. Longitudinal and radial components of
the metric mix with the active scalars and behave better [26, 27]. Despite the area-law
behavior of the Wilson loop in MN background [4], the presence of massless fluctuations
casts some shadow on the holographic interpretation as a dual to a confining theory such

as N =1SYM.

6 Conclusions and summary

Let us conclude by summarizing our results and draw lines for future investigation.
We have shown that all RG flows described by the PT ansatz [5] in Type IIB supergrav-

ity enjoy exact SU(2) x SU(2) symmetry in that not only the metric but also background

p-forms are invariant under diffeomorphisms generated by the six Killing vectors. We have
then identified a very general ansatz for the combined fluctuations of metric and p-forms
that diagonalizes the resulting equations for the bulk massless vectors. Although derived
in the context of holography, our ansatz is expected to have much wider applicability in
any flux compactification with isometry. Restricting our attention to the case of back-
grounds invariant under world-sheet parity €2, we have illustrated our procedure in the
case of MN solution [4] for wrapped D5-branes. The spectrum of massless vector harmon-
ics in this background — very much as the spectrum of massless scalars and transverse
traceless fluctuations of the metric [26, 27] — is continuous and has no mass gap. This
drawback might be related to the impossibility of fully decoupling KK states from the
desired physical mg(ie/s, which survive in the deep IR. In particular the very presence of
an exact SU(2) x SU(2) symmetry is a remnant of the breaking of N'=4 to N' = 1* with
common mass for the three chiral multiplets. Since this symmetry is an exact symmetry of
any RG flows described by PT ansatz [5], not excluding KS solution [3], we should conclude

"The very same equation governs the dynamics of the transverse modes of the supersymmetry partners
of the graviton e.g. gravitino, graviphoton, ...as originally shown in [19].
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that holographic SYM is still undelivered [44] at least in a top-down approach. The strictly
5-d bottom-up approach embodied by Holographic QCD [37-41] seems more promising in
this respect.
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