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1 Introduction

In a recent series of papers [1–6] we put forward a holographic framework for inflationary

cosmology and discussed a novel class of models describing a universe that started in a non-

geometric phase, which is described holographically via a large-N three-dimensional QFT.

The power spectra and the scalar bispectrum were computed in [1, 2] and [3], respectively,

and in this paper we complete this program by computing the non-Gaussianities that

involve tensors. Non-Gaussianities involving tensors are not expected to be measurable

in near-future experiments. Nevertheless, they are still interesting theoretically and their

structure has been the topic of several recent papers [7–10].

The holographic model is specified by providing the dual QFT and the holographic

dictionary that relates QFT correlation functions to cosmological observables. We worked

out the holographic dictionary for non-Gaussianities involving tensors in [6], and in this

paper we compute the relevant QFT correlation functions. The models we discuss are based

on perturbative three-dimensional QFTs that admit a large-N limit and have a generalised

conformal structure [11, 12]. An example of such a theory is SU(N) Yang-Mills theory

coupled to massless scalars and fermions, with all fields transforming in the adjoint of

SU(N). The non-Gaussianities are extracted from the 3-point function of the stress tensor

of this theory. The leading order 1-loop computation of this 3-point function is independent

of the interactions of the QFT, and thus our main task is to compute this 3-point function

for free QFTs.

Since all leading order results depend only on the free theory, let us briefly discuss

the case in which the holographic model is a free QFT. In such a model, the spectrum

is the exactly scale-invariant Harrison-Zel’dovich spectrum and the bispectrum is given

exactly by the results reported here, i.e., the leading order results are the exact answer

in the free theory. The shapes associated with the bispectrum may thus be considered as

the analogue of the exact scale-invariant spectrum for higher point functions. We have

seen in [4] that the scalar bispectrum shape for this model is indeed special: it is exactly

equal to the factorisable equilateral shape1 originally introduced in [13]. One may thus

anticipate that shapes associated with the other 3-point functions will also have special

properties. Possible shapes for the bispectrum involving only tensors have been discussed

recently in [7] and here we will define and discuss shapes for the bispectrum involving both

tensors and scalars.

The computation of the 3-point function of the stress tensor at 1-loop is a non-trivial

task even for free QFTs. We discuss and develop several methods for evaluating the relevant

Feynman diagrams. The 1-loop result is constrained by Ward identities and these provide

a very non-trivial check of the expression we obtained by a direct computation.

As mentioned above, to 1-loop order only the free part of the QFT enters. The QFT

consists of gauge fields, fermions, minimal and conformal scalars. Conformal scalars and

fermions are conformal field theories and their 3-point functions are constrained by con-

formal Ward identities. As is well known (from a position space analysis) [14], the 3-point

function of the stress tensor in d = 3 is uniquely fixed by conformal invariance to be a

1The holographic model is also the only model that yields exactly this shape.
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linear combination of two conformal invariants, and is thus parametrised by two constants.

(We assume parity is preserved). Our computation is done in momentum space and we

thus provide the most general such 3-point functions in momentum space, where the two

parameters are the number of conformal scalars and the number of fermions. The same

computation was also recently reported in [7].2 We have explicitly verified that our results

satisfy the conformal Ward identities.

Let us now turn to minimal scalars and gauge fields. In three dimensions vectors are

dual to scalars, so one may expect that gauge fields contribute the same as minimal scalars

at 1-loop order. We will indeed verify that this is the case. Note that beyond 1-loop the

two are expected to contribute differently. Minimal scalars differ from conformal scalars

in the way they couple to gravity, which in flat spacetime is reflected in their having a

different stress tensor. More precisely, the stress tensor T φij for a minimal scalar may be

decomposed into a part T̃ φij corresponding to the stress tensor for a conformal scalar plus

an “improvement term”:

T φij = T̃ φij −
1

8

(
δij∂

2 − ∂i∂j
)
φ2. (1.1)

It follows that the 3-point function of T φij may be computed from the 3-point functions

involving T̃ φij and the dimension one operator O1 = φ2. In turn, these 3-point functions

are uniquely determined by conformal invariance, up to constants [14]. Thus, effectively all

3-point functions are determined by conformal 3-point functions at this order, even though

the underlying theory is not conformal.

In [7], the 3-point functions for tensors were computed in a de Sitter background. The

de Sitter isometries act as the conformal group at late times, and the 3-point functions are

then constrained by conformal invariance to be specific linear combinations of the 3-point

functions of conformal scalars and fermions. Note that the de Sitter result is the leading

order approximation for slow-roll inflation. In general one expects that (broken) conformal

invariance would constrain cosmological correlators in asymptotically de-Sitter slow-roll

inflation, see also [15, 16].

Our holographic results are for a very different universe, but we have seen that all rele-

vant 3-point functions are essentially determined by conformal 3-point functions. One may

then wonder how our results compare with those of slow-roll inflation. The 3-point func-

tions involving only tensors are determined by the 3-point functions of conformal scalars

and fermions, and, as in the discussion of [7], they agree exactly with slow-roll inflation

if the field content of the dual QFT is appropriately chosen. The other 3-point functions

(involving both scalar and tensor perturbations) are different but, perhaps surprisingly,

they are rather similar. To quantify the differences we define (and plot) shape functions

for all correlators, generalising the notion of shape functions for 3-point functions of only

scalars or only tensors.

This paper is organised as follows. In section 2 we discuss the dual QFT and in

section 3 we present the holographic dictionary. In section 4 we compute all relevant

QFT correlation function by direct evaluation of the relevant Feynman integrals, and in

2Our results agree with the ones in v2 of [7]. Relative to [7], we also computed semi-local terms.
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section 5 we explain their structure using Ward identities. The holographic predictions

for the cosmological observables are presented in section 6 and these results are compared

with the slow-roll ones in section 7. We discuss our results in section 8. Several technical

results are presented in four appendices: in appendix A we summarise our notation and

conventions for the helicity tensors, in appendix B we present three different methods for

evaluating the relevant diagrams, in appendix C we show that ghosts and gauge fixing

terms do not contribute in correlators of the stress tensor and in appendix D we present

the conformal and diffeomorphicm Ward identities.

2 Dual QFT

As a dual QFT we consider super-renormalisable theories that admit a large N limit and

contain one dimensionful coupling constant. A prototype example3 is three-dimensional

SU(N̄) Yang-Mills theory4 coupled to a number of massless scalars and massless fermions,

all transforming in the adjoint of SU(N̄). Theories of this type are typical in AdS/CFT

where they appear as the worldvolume theories of D-branes. A general such model that

admits a large N̄ limit is

S =
1

g2YM

∫
d3x tr

(
1

4
F IijF

I
ij +

1

2
(∂φJ)2 +

1

2
(∂χK)2 + ψ̄L/∂ψL + interactions

)
, (2.1)

where for all fields, ϕ = ϕaT a, and trT aT b = δab. We work with the Wick rotated QFT (of

signature (+,+,+)). This is mostly for convenience; we could equally well have stated all

results in Lorentzian signature. The analytic continuation relevant for cosmology (which

will appear in (3.8) below) is a different continuation: it acts on the magnitude of the

momentum. The gamma matrices satisfy {γi, γj} = −2δij . We consider NA gauge fields

AI (I = 1, . . . , NA), Nφ minimal scalars φJ (J = 1, . . . , Nφ), Nχ conformal scalars χK

(K = 1, . . . , Nχ) and Nψ fermions ψL (L = 1, . . . , Nψ). Note that g2YM has dimension

one in three dimensions. In general, the Lagrangian (2.1) will also contain dimension-four

interaction terms (see [2]). We will leave these interactions unspecified, however, as they

do not contribute to the leading order calculations we perform here.

In the next section we will present the holographic formulae that relate cosmological

3-point functions to correlation functions of the dual QFT. Generally speaking, the terms

appearing in these formulae (see (3.3)–(3.6)) are either 3-point functions of the stress tensor,

or else semi-local terms (i.e., terms which are analytic in two of the three momentum). The

semi-local terms involve either 2-point functions of the stress tensor or the Υ tensor defined

by coupling the QFT to gravity, differentiating the stress tensor w.r.t. to the background

metric and then setting the background metric to the flat metric,

Υijkl(~x1, ~x2) =
δTij(~x1)

δgkl(~x2)

∣∣∣
0
= 2

δ2S

δgij(~x1)δgkl(~x2)

∣∣∣
0
+

1

2
Tij(~x1)δklδ(~x1 − ~x2). (2.2)

3A different example would be to consider O(N) models, see [17] for a related discussion.
4We use the unconventional notation SU(N̄) as we reserve N for the analytically continued value N̄ =

−iN .
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Figure 1. 1-loop contribution to the

stress tensor 3-point function.

The 2-point function takes the following general form

〈〈Tij(q̄)Tkl(−q̄)〉〉 = A(q̄)Πijkl +B(q̄)πijπkl, (2.3)

where the double bracket notation suppresses the delta function associated with momentum

conservation, i.e.,

〈Tij(~̄q1)Tkl(~̄q2)〉 = (2π)3δ(~̄q1 + ~̄q2)〈〈Tij(q̄1)Tkl(−q̄1)〉〉, (2.4)

and the transverse and transverse traceless projection operators are respectively

πij = δij −
q̄iq̄j
q̄2

, Πijkl =
1

2

(
πikπjl + πilπjk − πijπkl

)
. (2.5)

The leading contribution to the 2- and 3-point function comes from 1-loop diagrams

(see figure 1 for the 3-point function), which are of order N̄2 and involve only the free

part of the Lagrangian. Interactions contribute to diagrams at 2-loop order and higher,

but these are suppressed by factors of g2eff relative to the 1-loop contribution and will be

neglected here. As discussed in [1, 2], g2eff is of the order of ns−1 ∼ O(10−2). Indeed, fitting

the WMAP data to this model [5] leads to a small value of g2eff justifying the perturbative

treatment.

For spatially flat cosmologies, the background metric seen by the dual QFT is also flat.

The dual stress tensor is then given by

Tij =
2√
g

δS

δgij

∣∣∣∣
gij=δij

= TAij + T φij + Tψij + Tχij , (2.6)

where the contributions from the various fields (suppressing the interactions, as well as the

ghost and gauge-fixing terms which we discuss in appendix C) in (2.1) are

TAij =
1

g2YM

tr

[
F IikF

I
jk − δij

1

4
F IklF

I
kl

]
, (2.7)

T φij =
1

g2YM

tr

[
∂iφ

J∂jφ
J − δij

1

2
(∂φJ)2

]
, (2.8)

Tχij =
1

g2YM

tr

[
∂iχ

K∂jχ
K − 1

8
∂i∂j(χ

K)2 − δij

(
1

2
(∂χK)2 − 1

8
∂2(χK)2

)]
, (2.9)

Tψij =
1

g2YM

tr

[
1

2
ψ̄Lγ(i

↔

∂ j)ψ
L − δij

1

2
ψ̄L
↔

/∂ ψL
]
, (2.10)
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where
↔

∂ i=
→

∂ i −
←

∂ i and symmetrisation is performed with unit weight. Note that the trace

of the stress tensors for both conformally coupled scalars and for massless fermions vanish

on shell. This is a consequence of the Weyl invariance of the quadratic action for these

fields (with the fields transforming non-trivially) when the action (2.1) is appropriately

coupled to gravity.

3 Holographic formulae for cosmological 3-point functions

We review in this section the holographic formulae for cosmological 3-point functions de-

rived in [6]. These formulae relate the late-time behaviour of the 3-point functions of scalar

ζ and tensor γ̂ij perturbations with correlation functions of the stress tensor of the dual

QFT. By late times we mean the end of the holographic epoch, which should be the be-

ginning of hot big bang cosmology.5 In subsequent sections we will use the hologragraphic

formulae to obtain the cosmological predictions for a universe described holographically by

a weakly coupled QFT.

More precisely, we consider 3-point functions involving the curvature perturbation ζ on

uniform energy density slices and the transverse traceless tensor γ̂ij (γ̂ii = 0 and ∂iγ̂ij = 0).

These variables are defined such that in comoving gauge, where the inflaton perturbation

δϕ vanishes, the spatial part of the perturbed metric reads

gij = a2e2ζ [eγ̂ ]ij = a2e2ζ
(
δij + γ̂ij +

1

2
γ̂ikγ̂kj

)
. (3.1)

(For fully gauge-invariant expressions to quadratic order see section 2.2 of [6].) We find it

useful to work in the helicity basis where

γ̂ij(~q) = γ̂(s)(~q)ǫ
(s)
ij (~q) (3.2)

and the helicity tensors ǫ
(s)
ij (~q) are summarised in appendix A.

The holographic formulae for the in-in 3-point correlators are given by

〈〈ζ(q1)ζ(q2)ζ(q3)〉〉

= − 1

256

(∏

i

Im[B(q̄i)]
)−1

× Im
[
〈〈T (q̄1)T (q̄2)T (q̄3)〉〉+ 4

∑

i

B(q̄i)

− 2
(
〈〈T (q̄1)Υ(q̄2, q̄3)〉〉+ cyclic perms.

)]
, (3.3)

〈〈ζ(q1)ζ(q2)γ̂(s3)(q3)〉〉

= − 1

32

(
Im[B(q̄1)]Im[B(q̄2)]Im[A(q̄3)]

)−1

× Im
[
〈〈T (q̄1)T (q̄2)T (s3)(q̄3)〉〉 − 2

(
Θ

(s3)
1 (q̄i)B(q̄1) + Θ

(s3)
2 (q̄i)B(q̄2)

)

− 2〈〈Υ(q̄1, q̄2)T
(s3)(q̄3)〉〉 − 2〈〈T (q̄1)Υ(s3)(q̄2, q̄3)〉〉 − 2〈〈T (q̄2)Υ(s3)(q̄1, q̄3)〉〉

]
, (3.4)

5In particular, we will assume a smooth transition to hot big bang cosmology. Developing a holographic

theory of reheating is very interesting but will not be pursued here, see the comments at the end of section

2 of [5] for a preliminary discussion.
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〈〈ζ(q1)γ̂(s2)(q2)γ̂(s3)(q3)〉〉

= −1

4

(
Im[B(q̄1)]Im[A(q̄2)]Im[A(q̄3)]

)−1

× Im
[
〈〈T (q̄1)T (s2)(q̄2)T

(s3)(q̄3)〉〉 −
1

2

(
A(q̄2) +A(q̄3)

)
θ(s2s3)(q̄i)−B(q̄1)Θ

(s2s3)(q̄i)

− 2〈〈T (q̄1)Υ(s2s3)(q̄2, q̄3)〉〉 − 2〈〈T (s2)(q̄2)Υ
(s3)(q̄1, q̄3)〉〉 − 2〈〈T (s3)(q̄3)Υ

(s2)(q̄1, q̄2)〉〉
]
,

(3.5)

〈〈γ̂(s1)(q1)γ̂(s2)(q2)γ̂(s3)(q3)〉〉

= −
(∏

i

Im[A(q̄i)]
)−1

× Im
[
2〈〈T (s1)(q̄1)T

(s2)(q̄2)T
(s3)(q̄3)〉〉 −

1

2
Θ(s1s2s3)(q̄i)

∑

i

A(q̄i)

− 4
(
〈〈T (s1)(q̄1)Υ

(s2s3)(q̄2, q̄3)〉〉+ cyclic perms.
)]
, (3.6)

where, as noted previously, the double bracket notation indicates correlators with the

momentum-conserving delta function removed, i.e.,

〈ζ(~q1)ζ(~q2)ζ(~q3)〉 = (2π)3δ(
∑

~qi)〈〈ζ(q1)ζ(q2)ζ(q3)〉〉, (3.7)

and similarly for other correlators. The coefficients A(q̄i) and B(q̄i) are related to 2-point

function of the stress tensor (see (2.3)), while T and T (s) are the trace and helicity-projected

transverse traceless part of Tij , as defined in appendix A. Similarly, Υ, Υ(s) and Υ(s1s2) are

the trace and helicity projections of the Υ tensor (2.2). The theta functions, Θ
(s)
1 , Θ

(s)
2 ,

Θ(s1s2), θ(s1s2) and Θ(s1s2s3), represent specific contractions of the helicity tensors, and are

described in appendix A. The imaginary part in these formulae is taken after making the

analytic continuation

N̄ = −iN, q̄i = −iqi. (3.8)

where N̄ is the rank of the gauge group, see section 2, and q = +
√
~q 2 is the magnitude of

the momentum.

The right-hand sides of (3.3)–(3.6) were obtained by first deriving, using standard

gauge/gravity duality, the holographic 3-point functions of the stress tensor along general

holographic RG flows, either asymptotically AdS or asymptotic to non-conformal brane6

backgrounds; and then analytically continuing to the cosmological case. These correlation

functions are in a flat background and are defined as usual (for example) by the path

integral formula

〈Ti1j1(q̄1) · · ·Tinjn(q̄n)〉 =
∫

[dϕ]Ti1j1(q̄1) · · ·Tinjn(q̄n)e−SQFT [ϕ] (3.9)

where ϕ denotes collectively all fields of the boundary theory. We work with the Wick

rotated QFT and correspondingly the bulk has Euclidean signature too. This is convenient

because bulk regularity in the interior translates into the standard Bunch-Davies vacuum

after analytic continuation to cosmology [1]. The holographic relations (3.3)–(3.6) may also

6The non-conformal brane backgrounds are asymptotically AdS in the dual frame [18] the final formulae

are however the same in both cases [4, 6].
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be viewed as computing the wavefunction of the universe extending the analysis of [19] (see

also the recent [20]) to a general class of FRW spacetimes.

Note that all terms appearing in the right-hand side numerators of (3.3)–(3.6), except

for the 3-point functions, are semi-local, i.e., in position space two of the operators are

coincident (in momentum space this corresponds to the correlator being non-analytic in

only one of the three momenta). Due to the non-analytic powers of momenta appearing in

the denominators of these formulae, however, semi-local terms in the numerator generate

contributions to the bispectra that are non-analytic in two momenta. Hence, as discussed

in [4] in the case of the scalar bispectrum, they may contribute, for example, to ‘local’ type

non-Gaussianity. Note that these terms may be computed unambiguously in perturbation

theory (and we will do so in the next section). In contrast, ultra-local terms, i.e., terms

where all operators are coincident (or equivalently terms analytic in all three momenta), are

in general scheme dependent since their value can be changed by local finite counterterms.

One often defines the correlation function of the stress tensor by first coupling the

theory to a background metric gij , differentiating w.r.t. gij and then setting gij = δij . One

has to be careful, however, if one is to match with the unambiguous expression in (3.9).

The 1-point function in the presence of the source gij is defined by

〈Tij(x)〉g = − 2√
g(x)

δ

δgij(x)

∫
[dϕ]e−SQFT [ϕ;gij ] (3.10)

Higher point functions are obtained by further functional differentiation and then setting

gij = δij . This procedure leads to a new insertion of the stress tensor when functional

derivative acts on SQFT [ϕ; gij ], but also leads to additional semi- and ulta-local terms.

One source of such terms are the factors of 1/
√
g(x) in (3.10) and for this reason some

authors (see for example [14]) define the correlators without such factors, i.e.,

< Ti1j1(x1) · · ·Tinjn(xn) >≡ (−2)n
δ

δgi1j1(x1)
· · · δ

δginjn(xn)

∫
[dϕ]e−SQFT [ϕ;gij ]

∣∣∣∣
gij=δij

(3.11)

Note however that these correlators differ from (3.9) (hence the different notation: <

T . . . > instead of 〈T . . .〉) because the stress tensor of the theory in a curved background

also depends on gij and the functional differentiation leads to additional insertions of

Υijkl(~x1, ~x2) = δTij(~x1)/δg
kl(~x2)

∣∣
0
. A careful evaluation of all such semi-local terms is

given in section 4.1 of [6]. This is the origin of most (but not all) semi-local terms in (3.3)–

(3.6).

To connect with holography let us now recall that in gauge/gravity duality one identi-

fies the fields parametrizing the boundary conditions for the bulk fields with the sources of

the dual operators, and the (renormalised) on-shell gravitational action with the generat-

ing functional of correlation functions [21, 22]. In particular, the boundary metric g(0)ij in

Fefferman-Graham coordinates is identified with the source of stress tensor [23]. One could

also envision a holographic mapping where the source of the stress tensor gij is related to

the boundary metric g(0)ij via a local relation. Then, as was recently emphasized in [7],

the two holographic maps would differ by (semi-) local terms. Given any such relation one

– 8 –
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can straightforwardly work out the corresponding holographic formulae, including all semi-

local terms. One can (at least partially) fix this potential ambiguity in the holographic

map by requiring that the (anomalous) Ward identities derived in gravity and in QFT

match. For example, the matching of the Weyl anomaly in odd (bulk) dimensions [24, 25]

fixes gij = g(0)ij . In even dimensions one would look to match the semi-local terms in the

dilatation Ward identity of higher point functions. The formulae (3.3)–(3.6) we use here

were derived using the standard identification gij = g(0)ij and the definitions of ζ and γ̂ij
in (3.1).

4 Evaluating the holographic formulae

In this section and throughout, we will work in Euclidean signature, and to leading order in

g2eff and 1/N̄ . It will be useful to express our results in terms of the elementary symmetric

polynomials of two and three variables, which we denote

ā123 = q̄1 + q̄2 + q̄3, b̄123 = q̄1q̄2 + q̄2q̄3 + q̄3q̄1, c̄123 = q̄1q̄2q̄3,

ā12 = q̄1 + q̄2, b̄12 = q̄1q̄2, (4.1)

with similar expressions for ā23, b̄23, etc. We also define

λ̄2 = (q̄1 + q̄2 + q̄3)(−q̄1 + q̄2 + q̄3)(q̄1 − q̄2 + q̄3)(q̄1 + q̄2 − q̄3)

= −ā123(ā3123 − 4ā123b̄123 + 8c̄123), (4.2)

and the quantities

Pijkl = 2δi(kδl)j − δijδkl, P̂ijkl = δi(kδl)j − δijδkl. (4.3)

Note that λ̄ is equal to 1/4 of the area of the triangle with length sides equal to the

momenta q̄1, q̄2, q̄3 (Heron’s formula).

4.1 2-point functions

In this subsection we recall the contribution to the 2-point function (2.3) from each of the

individual fields derived in [1, 2]:

Aφ = Bφ =
1

256
NφN̄

2q̄3, Aψ =
1

128
NψN̄

2q̄3, Bψ = 0,

AA = BA =
1

256
NAN̄

2q̄3, Aχ =
1

256
NχN̄

2q̄3, Bχ = 0, (4.4)

and thus in total we have

A =
1

256
N(A)N̄

2q̄3, B =
1

256
N(B)N̄

2q̄3, (4.5)

where

N(A) = NA +Nφ +Nχ + 2Nψ, N(B) = NA +Nφ. (4.6)
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4.2 Contribution from minimal scalars

The 3-point function for minimal scalars is given by the integral

〈〈T φij(q̄1)T
φ
kl(q̄2)T

φ
mn(q̄3)〉〉

= NφN̄
2PijabPklcdPmnef

∫
[dq̄]

q̄aq̄c(q̄ − q̄1)b(q̄ − q̄1)e(q̄ + q̄2)d(q̄ + q̄2)f
q̄2(q̄ − q̄1)2(q̄ + q̄2)2

. (4.7)

Here, and throughout, we will make use of the shorthand notation [dq̄] = d3~̄q/(2π)3.
Evaluating this integral using the general methods discussed in appendix B, we obtain

〈〈Tφ(q̄1)Tφ(q̄2)T (+)
φ (q̄3)〉〉 =− NφN̄

2λ̄2

1024
√
2 q̄23 ā

2
123

[
3ā12q̄

2
3+2(3ā212−4b̄12)q̄3+ā12(3ā

2
12−4b̄12)

]
,

〈〈Tφ(q̄1)T (+)
φ (q̄2)T

(+)
φ (q̄3)〉〉 =− NφN̄

2

8192 ā2123b̄
2
23

(q̄1−ā23)2
[
5q̄71+20ā23q̄

6
1+(29ā223+6b̄23)q̄

5
1

+ā23(17ā
2
23+21b̄23)q̄

4
1+3ā223(ā

2
23+8b̄23)q̄

3
1+2ā323(ā

2
23+3b̄23)q̄

2
1

+(3ā623−6ā423b̄23−32b̄323)q̄1+ā
5
23(ā

2
23−3b̄23)

]
,

〈〈Tφ(q̄1)T (+)
φ (q̄2)T

(−)
φ (q̄3)〉〉 =− NφN̄

2

8192 b̄223
(q̄21−ā223+4b̄23)

2
[
5q̄31−(ā223+2b̄23)q̄1+ā23(ā

2
23−3b̄23)

]
,

〈〈T (+)
φ (q̄1)T

(+)
φ (q̄2)T

(+)
φ (q̄3)〉〉 =− NφN̄

2λ̄2

32768
√
2 ā4123c̄

2
123

[
3ā9123−7ā7123b̄123+5ā6123c̄123−64c̄3123

]
,

〈〈T (+)
φ (q̄1)T

(+)
φ (q̄2)T

(−)
φ (q̄3)〉〉 =− NφN̄

2λ̄2

32768
√
2 ā2123c̄

2
123

(q̄3−ā12)2
[
3q̄53+4ā12q̄

4
3+(ā212−2b̄12)q̄

3
3

+ā12(ā
2
12−3b̄12)q̄

2
3+4ā212(ā

2
12−3b̄12)q̄3+ā

3
12(3ā

2
12−7b̄12)

]
. (4.8)

All remaining 3-point functions for minimal scalars may be found from these via permuta-

tions and/or a parity transformation. (The result for three insertions of the trace is given

in [4].)

Turning now to evaluate the semi-local terms in the holographic formulae, for minimal

scalars

Υφ
ijkl(~x1, ~x2) = −1

2
(δijT

φ
kl + PijklT

φ)δ(~x1 − ~x2). (4.9)

We thus have

〈〈T φij(q̄1)Υ
φ
klmn(q̄2, q̄3)〉〉 = −1

2
δkl〈〈T φij(q̄1)T φmn(−q̄1)〉〉 −

1

2
Pklmn〈〈T φij(q̄1)T φ(−q̄1)〉〉, (4.10)

from which we may extract the helicity-projected components

〈〈Tφ(q̄1)Υ(s3)
φ (q̄2, q̄3)〉〉 = −3

2
Bφ(q̄1)Θ

(s3)
1 (q̄i),

〈〈Tφ(q̄1)Υ(s2s3)
φ (q̄2, q̄3)〉〉 = −Bφ(q̄1)θ(s2s3)(q̄i),

〈〈T (s1)
φ (q̄1)Υφ(q̄2, q̄3)〉〉 = 0,

〈〈T (s1)
φ (q̄1)Υ

(s3)
φ (q̄2, q̄3)〉〉 = −3

8
Aφ(q̄1)θ

(s1s3)(q̄i),

〈〈T (s1)
φ (q̄1)Υ

(s2s3)
φ (q̄2, q̄3)〉〉 = 0. (4.11)
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4.3 Contribution from fermions

In momentum space

Tψij (~̄q1) =
1

g2YM

tr

[
i

2
P̂ijab

∫
[dq̄](q̄1 − 2q̄)a : ψ̄

L(~̄q)γbψ
L(~̄q1 − ~̄q) :

]
, (4.12)

from which it follows that the 3-point function is given by the integral

〈〈Tψij (q̄1)Tψkl(q̄2)Tψmn(q̄3)〉〉

=
1

4
NψN̄

2P̂ijabP̂klcdP̂mnefΓubvfwd

∫
[dq̄]

q̄u(q̄−q̄1)v(q̄+q̄2)w(2q̄−q̄1)a(2q̄+q̄2)c(2q̄−q̄1+q̄2)e
q̄2(q̄ − q̄1)2(q̄ + q̄2)2

,

(4.13)

where

Γubvfwd = tr(γuγbγvγfγwγd)

= −2δubPvwdf + 2δuvPbwdf − 2δufPbwvd + 2δuwPbfvd − 2δudPbfvw, (4.14)

recalling that {γi, γj} = −2δij .

Evaluating the integral explicitly, we find7

〈〈Tψ(q̄1)Tψ(q̄2)T (+)
ψ (q̄3)〉〉 = 0,

〈〈Tψ(q̄1)T (+)
ψ (q̄2)T

(+)
ψ (q̄3)〉〉 = − NψN̄

2

2048 b̄223
ā23(ā

2
23 − 3b̄23)(q̄

2
1 − ā223)

2,

〈〈Tψ(q̄1)T (+)
ψ (q̄2)T

(−)
ψ (q̄3)〉〉 = − NψN̄

2

2048 b̄223
ā23(ā

2
23 − 3b̄23)(q̄

2
1 − ā223 + 4b̄23)

2,

〈〈T (+)
ψ (q̄1)T

(+)
ψ (q̄2)T

(+)
ψ (q̄3)〉〉 = − NψN̄

2λ̄2

8192
√
2 ā4123c̄

2
123

[
ā9123 − 2ā7123b̄123 + ā6123c̄123 + 32c̄3123

]
,

〈〈T (+)
ψ (q̄1)T

(+)
ψ (q̄2)T

(−)
ψ (q̄3)〉〉 = − NψN̄

2λ̄2

8192
√
2 ā2123c̄

2
123

(q̄3 − ā12)
2
[
q̄53 + ā12q̄

4
3 − b̄12q̄

3
3

+ ā212(ā
2
12 − 3b̄12)q̄3 + ā312(ā

2
12 − 2b̄12)

]
. (4.15)

The correlators with only one trace may be written in the condensed form

〈〈Tψ(q̄1)T (s2)
ψ (q̄2)T

(s3)
ψ (q̄3)〉〉 = −1

2

(
Aψ(q̄2) +Aψ(q̄3)

)
θ(s2s3)(q̄i). (4.16)

This result is in fact fully determined by the dilatation Ward identity (accounting for its

semi-local nature), as we discuss in the next section.

To compute the semi-local terms appearing in the holographic formulae, we find by

explicit calculation that the operator

Υψ
ijkl(~x1, ~x2) = C

(M)
ijklmnMmn(~x1)δ(~x1 − ~x2) + C

(J )
ijklmJm(~x1)∂nδ(~x1 − ~x2), (4.17)

7 The result for the momentum dependence of the (+ + +) and (+ + −) components agrees with the

result reported in [7], but the overall normalisation (after taking into account the difference in conventions,

see appendix A) still differs from ours by a factor of four. Actually all correlators in [7], including the

2-point functions, differ from ours by the same overall factor of four.
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where partial derivatives are taken with respect to ~x1, and the local operators

Mmn =
1

g2YM

tr

[
1

2
ψ̄Lγm

↔

∂ nψ
L

]
, Jm =

1

g2YM

tr

[
1

4
ψ̄Lγmψ

L

]
, (4.18)

are associated with the coefficients

C
(M)
ijklmn = δi(kδl)jδmn −

1

2
δijδm(kδl)n −

1

2
δm(kδl)(iδj)n,

C
(J )
ijklm = δi(kδl)jδmn + δijδm(kδl)n − δijδklδmn − δm(kδl)(iδj)n. (4.19)

As might be anticipated from their respective conformal dimensions (see section 5),

〈TψklMmn〉 = 〈TψklTψmn〉, 〈TψklJm〉 = 0, (4.20)

from which it follows that

〈〈Tψij (q̄1)Υ
ψ
klmn(q̄2, q̄3)〉〉 = C

(M)
klmnab〈〈T

ψ
ij (q̄1)T

ψ
ab(−q̄1)〉〉. (4.21)

Projecting into the helicity basis, the components appearing in the holographic formulae are

〈〈Tψ(q̄1)Υ(s3)
ψ (q̄2, q̄3)〉〉 = 0,

〈〈Tψ(q̄1)Υ(s2s3)
ψ (q̄2, q̄3)〉〉 = 0,

〈〈T (s1)
ψ (q̄1)Υψ(q̄2, q̄3)〉〉 = 0,

〈〈T (s1)
ψ (q̄1)Υ

(s3)
ψ (q̄2, q̄3)〉〉 = −1

2
Aψ(q̄1)θ

(s1s3)(q̄i),

〈〈T (s1)
ψ (q̄1)Υ

(s2s3)
ψ (q̄2, q̄3)〉〉 = − 1

16
Aψ(q̄1)Θ

(s1s2s3)(q̄i). (4.22)

4.4 Contribution from conformal scalars

As discussed in the introduction, the stress tensor T φij for minimal scalars may be decom-

posed as T φij = T̃ φij + Cij , where T̃ φij is the stress tensor for conformal scalars and Cij is an

improvement term. For fields in the adjoint representation, and in momentum space, the

improvement term takes the form

Cij(~̄q1) =
1

g2YM

tr

[
1

8
q̄21πij(q̄1)

∫
[dq̄] :φJ(~̄q)φJ(~̄q1 − ~̄q) :

]
. (4.23)

Due to the presence of the projection operator πij , it follows that T
(s)
φ (~̄q) = T̃

(s)
φ (~̄q) and

hence the conformal scalar 3-point function involving three helicities is equal to that for

minimal scalars. Similarly, the correlator

〈〈T̃φ(q̄1)T̃ (s2)
φ (q̄2)T̃

(s3)
φ (q̄3)〉〉 = 〈〈Tφ(q̄1)T (s2)

φ (q̄2)T
(s3)
φ (q̄3)〉〉 − 〈〈C(q̄1)T (s2)

φ (q̄2)T
(s3)
φ (q̄3)〉〉,

(4.24)

where the latter term may be evaluated from the integral

〈〈C(q̄1)T φkl(q̄2)T φmn(q̄3)〉〉 =
1

2
NφN̄

2q̄21PklabPmncd

∫
[dq̄]

q̄a(q̄ + q̄2)b(q̄ − q̄1)c(q̄ + q̄2)d
q̄2(q̄ − q̄1)2(q̄ + q̄2)2

. (4.25)
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Thus, to evaluate the conformal scalar 3-point function involving two helicities, only this

integral needs to be computed since we already have the result for minimal scalars. Finally,

evaluating the trace T̃φ(~̄q) directly, it is straightforward to show that the conformal scalar

3-point function involving only one helicity vanishes.

In light of these considerations, the 3-point functions for the conformal scalar field

χ are8

〈〈Tχ(q̄1)Tχ(q̄2)T (s3)
χ (q̄3)〉〉 = 0,

〈〈Tχ(q̄1)T (s2)
χ (q̄2)T

(s3)
χ (q̄3)〉〉 =

1

4

Nχ

Nψ
〈〈Tψ(q̄1)T (s2)

ψ (q̄2)T
(s3)
ψ (q̄3)〉〉,

〈〈T (s1)
χ (q̄1)T

(s2)
χ (q̄2)T

(s3)
χ (q̄3)〉〉 =

Nχ

Nφ
〈〈T (s1)

φ (q̄1)T
(s2)
φ (q̄2)T

(s3)
φ (q̄3)〉〉. (4.26)

Turning now to the semi-local terms in the holographic formulae, by direct calculation

Υχ
ijkl(~x1, ~x2) = −1

2

(
δijT

χ
kl + PijklT

χ
)
δ(~x1 − ~x2)

+
1

16

[
C

(1)
ijklmnδ(~x1 − ~x2)∂m∂n + C

(2)
ijklmn(∂mδ(~x1 − ~x2))∂n

+ C
(3)
ijklmn(∂m∂nδ(~x1 − ~x2))

]
Oχ(~x1), (4.27)

where partial derivatives are again taken with respect to ~x1, the dimension one operator

Oχ =
1

g2YM

tr[(χK)2], (4.28)

and the prefactors are

C
(1)
ijklmn = δijδk(mδn)l + 2δi(kδl)jδmn − δijδklδmn,

C
(2)
ijklmn = 2δijδk(mδn)l + δi(kδl)jδmn − δijδklδmn − 2δm(iδj)(kδl)n,

C
(3)
ijklmn = δijδk(mδn)l + δi(kδl)jδmn − δijδklδmn − 2δm(iδj)(kδl)n + δklδi(mδn)j . (4.29)

The precise form of these prefactors is not important, however, since

〈TχijOχ〉 = 0 (4.30)

due to the differing conformal dimension of the two operators, hence

〈〈Tχij(q̄1)Υ
χ
klmn(q̄2, q̄3)〉〉 = −1

2
δkl〈〈Tχij(q̄1)Tχmn(−q̄1)〉〉. (4.31)

8The result for momentum dependence of the (+ + +) and (+ +−) components agrees with the result

reported in v2 of [7], but the overall normalisation (after taking into account the difference in conventions,

see appendix A) still differs from ours by a factor of four, see also footnote 7.
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The helicity-projected components appearing in the holographic formulae are then

〈〈Tχ(q̄1)Υ(s3)
χ (q̄2, q̄3)〉〉 = 0,

〈〈Tχ(q̄1)Υ(s2s3)
χ (q̄2, q̄3)〉〉 = 0,

〈〈T (s1)
χ (q̄1)Υχ(q̄2, q̄3)〉〉 = 0,

〈〈T (s1)
χ (q̄1)Υ

(s3)
χ (q̄2, q̄3)〉〉 = −3

8
Aχ(q̄1)θ

(s1s3)(q̄i),

〈〈T (s1)
χ (q̄1)Υ

(s2s3)
χ (q̄2, q̄3)〉〉 = 0. (4.32)

4.5 Contribution from gauge fields

The stress tensor for the gauge fields is given by (2.7) plus the contribution due to the

ghosts and gauge-fixing terms. The latter contributions are BRST exact however, and

thus they should not contribute to the 3-point function. Indeed, we show in appendix C

that their contribution cancels.

Introducing the Hodge-dual field strength GIi , where

F Iij = ǫijkG
I
k, TAij =

1

g2YM

Pijab trG
I
aG

I
b , (4.33)

and evaluating its propagator, one finds the contribution from gauge fields to the 3-point

function is given by

〈〈TAij (q̄1)TAkl(q̄2)TAmn(q̄3)〉〉 = −NAN̄
2PijabPklcdPmnef

∫
[dq̄]πac(q̄)πbe(q̄ − q̄1)πdf (q̄ + q̄2).

(4.34)

Upon closer examination, this integral may equivalently be expressed in terms of the 2-

and 3-point functions for minimal scalars,

Nφ

NA
〈〈TAij (q̄1)TAkl(q̄2)TAmn(q̄3)〉〉 = 〈〈T φij(q̄1)T

φ
kl(q̄2)T

φ
mn(q̄3)〉〉 −Qklmnab〈〈T φij(q̄1)T

φ
ab(−q̄1)〉〉

−Qmnijab〈〈T φkl(q̄2)T
φ
ab(−q̄2)〉〉 −Qijklab〈〈T φmn(q̄3)T φab(−q̄3)〉〉,

(4.35)

where

Qijklmn = PijacPklbcP̂abmn. (4.36)

This result is a consequence of the fact that Gi may be identified with the operator ∂iφ,

where φ is a massless scalar field. The appearance of the various semi-local terms in (4.35)

then reflects the fact that ∂iGi vanishes identically, while ∂
2φ vanishes on-shell only.

Turning now to evaluate the semi-local terms appearing in the holographic formulae,

a short calculation reveals the operator

ΥA
ijkl(~x1, ~x2) = −1

2

[
δijT

A
kl + PijklT

A +QijklmnT
A
mn

]
δ(~x1 − ~x2). (4.37)

Making use of the fact that the 2-point functions for gauge fields and for minimal scalars

coincide (see (4.4)), it then follows that

Nφ

NA
〈〈TAij (q̄1)ΥA

klmn(q̄2, q̄3)〉〉 = 〈〈T φij(q̄1)Υ
φ
klmn(q̄2, q̄3)〉〉 −

1

2
Qklmnab〈〈T φij(q̄1)T

φ
ab(−q̄1)〉〉.

(4.38)
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Thus, from (4.35),

Nφ

NA

[
〈〈TAij (q̄1)TAkl(q̄2)TAmn(q̄3)〉〉 − 2

(
〈〈TAij (q̄1)ΥA

klmn(q̄2, q̄3)〉〉+ cyclic perms
)]

= 〈〈T φij(q̄1)T
φ
kl(q̄2)T

φ
mn(q̄3)〉〉 − 2

(
〈〈T φij(q̄1)Υ

φ
klmn(q̄2, q̄3)〉〉+ cyclic perms

)
. (4.39)

This particular combination, suitably projected, appears in the numerator of all the holo-

graphic formulae for cosmological 3-point functions (namely (3.4), (3.5) and (3.6)). Thus,

since the 2-point functions for gauge fields and minimal scalars also coincide, we see that

gauge fields and minimal scalars necessarily make identical contributions to all cosmologi-

cal 3-point functions. Since scalars and vectors are dual in three dimensions, this result is

perhaps not unexpected, and indeed similar behaviour was noted in [4] for the case of the

scalar bispectrum.

5 Ward identities

In the previous section we computed all relevant 3-point functions and semi-local terms by

direct computation of 1-loop Feynman diagrams. In this section we elucidate the structure

of these correlators by ascertaining the extent to which they are determined by Ward

identities.

5.1 Minimal scalars from conformal scalars

As noted previously, the stress tensor for minimal scalars may be decomposed as

T φij = T̃ φij −
1

8
(δij∂

2 − ∂i∂j)O1, O1 =
1

g2YM

tr[(φJ)2], (5.1)

where T̃ φij is the stress tensor for a conformal scalar field and O1 is a dimension one scalar

operator. The 3-point functions of T φij may thus be expressed in terms of 3-point functions

of the conformal fields T̃ φij and O1. Specifically, we find

〈〈T (s1)
φ (q̄1)T

(s2)
φ (q̄2)T

(s3)
φ (q̄3)〉〉 = 〈〈T̃ (s1)

φ (q̄1)T̃
(s2)
φ (q̄2)T̃

(s3)
φ (q̄3)〉〉 ,

〈〈Tφ(q̄1)T (s2)
φ (q̄2)T

(s3)
φ (q̄3)〉〉 = 〈〈T̃φ(q̄1)T̃ (s2)

φ (q̄2)T̃
(s3)
φ (q̄3)〉〉+

q̄21
4
〈〈O1(q̄1)T̃

(s2)
φ (q̄2)T̃

(s3)
φ (q̄3)〉〉 ,

〈〈Tφ(q̄1)Tφ(q̄2)T (s3)
φ (q̄3)〉〉 = 〈〈T̃φ(q̄1)T̃φ(q̄2)T̃ (s3)

φ (q̄3)〉〉+
q̄21
4
〈〈O1(q̄1)T̃φ(q̄2)T̃

(s3)
φ (q̄3)〉〉

+
q̄22
4
〈〈T̃φ(q̄1)O1(q̄2)T̃

(s3)
φ (q̄3)〉〉+

q̄21 q̄
2
2

16
〈〈O1(q̄1)O1(q̄2)T̃

(s3)
φ (q̄3)〉〉,

〈〈Tφ(q̄1)Tφ(q̄2)Tφ(q̄3)〉〉 = 〈〈T̃φ(q̄1)T̃φ(q̄2)T̃φ(q̄3)〉〉+
[
q̄21
4
〈〈O1(q̄1)T̃φ(q̄2)T̃φ(q̄3)〉〉+ 2 perm.

]

+

[
q̄21 q̄

2
2

16
〈〈O1(q̄1)O1(q̄2)T̃φ(q̄3)〉〉+ 2 perm.

]

+
q̄21 q̄

2
2 q̄

2
3

64
〈〈O1(q̄1)O1(q̄2)O1(q̄3)〉〉. (5.2)

Recalling that gauge fields contribute the same as minimal scalars, the computation of

general 3-point functions thus reduces to computing a set of 2- and 3-point functions in
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a CFT. (Note that free fermions are also a CFT.) These correlators are in turn (almost)

uniquely determined by Ward identities, as we now show.

5.2 Trace Ward identity

In light of the above, we are interested in correlation functions of the stress tensor and of

a scalar operator O∆ of dimension ∆ = 1 in a three-dimensional CFT. We will be more

general however and discuss the case of any d and ∆, provided only that ∆ 6= d. The trace

Ward identity in the presence of a source φ0 for O∆ reads

〈T (x)〉s = (∆− d)φ0〈O∆(x)〉s. (5.3)

This Ward identity implies that n-point functions involving an insertion of the trace of

the stress tensor are given by semi-local terms involving (n − 1)-point functions. These

relations can be obtained by functionally differentiating (5.3) w.r.t. the sources (n − 1)

times and then setting them to zero. Noting that all 1-point functions vanish, for the

2-point functions we find

〈T (x)O∆(y)〉 = 0, 〈T (x)Tkl(y)〉 = 0, (5.4)

and for the 3-point functions,

〈T (x)O∆(y)O∆(z)〉 = 〈 δT (x)
δφ0(y)

O∆(z)〉+ 〈 δT (x)
δφ0(z)

O∆(y)〉

+ (d−∆) [δ(x− y)〈O∆(x)O∆(z)〉+ δ(x− z)〈O∆(x)O∆(y)〉] ,
(5.5)

〈T (x)Tkl(y)O∆(z)〉 = 2〈 δT (x)
δgkl(y)

O∆(z)〉+ 〈 δT (x)
δφ0(z)

Tkl(y)〉+ 〈T (x)δTkl(y)
δφ0(z)

〉

+ (d−∆)δ(x− z)〈Tkl(y)O∆(x)〉, (5.6)

〈T (x)Tkl(y)Tmn(z)〉 = 2〈 δT (x)
δgkl(y)

Tmn(z)〉+ 2〈 δT (x)

δgmn(z)
Tkl(y)〉+ 2〈T (x) δTkl(y)

δgmn(z)
〉. (5.7)

As the stress tensor in the presence of sources has φ0 dependence

Tij [g, φ0] = Tij [g, φ0 = 0]− gijφ0O∆, (5.8)

we may in addition identify

δT (x)

δφ0(y)
= −dδ(x− y)O∆(x). (5.9)

Then, since the CFT correlator 〈TijO∆〉 vanishes for any operator O∆ with dimension

different to d, equations (5.5) and (5.6) reduce to

〈T (x)O∆(y)O∆(z)〉 = −∆ [δ(x− y)〈O∆(x)O∆(z)〉+ δ(x− z)〈O∆(x)O∆(y)〉] , (5.10)

〈T (x)Tkl(y)O∆(z)〉 = 2〈 δT (x)
δgkl(y)

O∆(z)〉. (5.11)
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Finally, it is convenient to express (5.7), (5.10) and (5.11) in momentum space in terms of

the Υ tensor defined in (2.2). Projecting into the helicity basis, we obtain the complete set

of trace Ward identities

〈〈T (q̄1)O∆(q̄2)O∆(q̄3)〉〉 = −∆
[
〈〈O∆(q̄2)O∆(−q̄2)〉〉+ 〈〈O∆(q̄3)O∆(−q̄3)〉〉

]
,

〈〈T (q̄1)T (q̄2)O∆(q̄3)〉〉 = 2〈〈Υ(q̄1, q̄2)O∆(q̄3)〉〉,
〈〈T (q̄1)T (s2)(q̄2)O∆(q̄3)〉〉 = 2〈〈Υ(s2)(q̄1, q̄2)O∆(q̄3)〉〉,

〈〈T (q̄1)T (q̄2)T (q̄3)〉〉 = 2
[
〈〈T (q̄1)Υ(q̄2, q̄3)〉〉+ 〈〈T (q̄2)Υ(q̄3, q̄1)〉〉+ 〈〈T (q̄3)Υ(q̄1, q̄2)〉〉

]
,

〈〈T (q̄1)T (q̄2)T (s3)(q̄3)〉〉 = 2
[
〈〈T (q̄1)Υ(s3)(q̄2, q̄3)〉〉+ 〈〈T (q̄2)Υ(s3)(q̄1, q̄3)〉〉

+ 〈〈Υ(q̄1, q̄2)T
(s3)(q̄3)〉〉

]
,

〈〈T (q̄1)T (s2)(q̄2)T
(s3)(q̄3)〉〉 =

1

2

(
A(q̄2) +A(q̄3)

)
θ(s2s3)(q̄i) + 2

[
〈〈T (q̄1)Υ(s2s3)(q̄2, q̄3)〉〉

+ 〈〈T (s2)(q̄2)Υ
(s3)(q̄1, q̄3)〉〉+ 〈〈T (s3)(q̄3)Υ

(s2)(q̄1, q̄2)〉〉
]
, (5.12)

where A(q̄) is the transverse traceless piece of the stress tensor 2-point function defined

in (2.3) (for conformal fields the trace piece B(q̄) vanishes as a consequence of (5.4)).

Comparing with our holographic formulae (3.3), (3.4) and (3.5), we immediately see

that conformal fields make no contribution to the numerators of these formulae, as found

earlier by explicit calculation. An important consequence of this, as we will see in section 6,

is that the ζζζ, ζζγ̂ and ζγ̂γ̂ cosmological shape functions are forced to be independent of

the field content of the dual QFT.

Further insight may be distilled from the trace Ward identities (5.12) by replacing the

semi-local contact terms on the r.h.s. with 2-point functions of Tij and O∆. On general

grounds, the Υ tensor has an expansion in terms of local operators of dimension less than

or equal to d, and for fermions and conformal scalars we computed this explicitly in (4.17)

and (4.27). Then, as we found in the analysis leading to (4.21) and (4.31), only operators

of dimension d contribute to the correlator 〈TijΥklmn〉, permitting it to be expressed in

terms of 〈TijTkl〉. Substituting into (5.12) our previous results (4.22) and (4.32) for the

semi-local terms 〈TijΥklmn〉, we obtain

〈〈Tχ(q̄1)Tχ(q̄2)T (s3)
χ (q̄3)〉〉 = 〈〈Tψ(q̄1)Tψ(q̄2)T (s3)

ψ (q̄3)〉〉 = 0,

〈〈Tχ(q̄1)T (s2)
χ (q̄2)T

(s3)
χ (q̄3)〉〉 = −1

4

(
Aχ(q̄2) +Aχ(q̄3)

)
θ(s2s3)(q̄i),

〈〈Tψ(q̄1)T (s2)
ψ (q̄2)T

(s3)
ψ (q̄3)〉〉 = −1

2

(
Aψ(q̄2) +Aψ(q̄3)

)
θ(s2s3)(q̄i). (5.13)

Thus, all our earlier results in (4.15) involving the trace Tψ are in fact a consequence of the

Ward identities (noting also (4.16)), and similarly for all our results in (4.26) involving Tχ.

For the latter, note that Aχ(q̄) = (Nχ/2Nψ)Aψ(q̄) from (4.4), hence from (5.13) we have

〈〈Tχ(q̄1)T (s2)
χ (q̄2)T

(s3)
χ (q̄3)〉〉 =

Nχ

4Nψ
〈〈Tψ(q̄1)T (s2)

ψ (q̄2)T
(s3)
ψ (q̄3)〉〉. (5.14)

As well as confirming earlier calculations, these formulae additionally serve as a check of

the overall sign in our 3-point function integrals.
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To check the results of our 3-point function calculations for minimal scalars using (5.2),

we must also evaluate the semi-local terms on the r.h.s. of (5.12) involving the correlator

〈O1Υ̃
φ
ijkl〉, where Υ̃φ

ijkl denotes the Υ tensor for conformal scalars. The expansion for this

latter quantity may be read off from (4.27) (replacing χ with φ). The correlator 〈O1Υ̃
φ
ijkl〉

receives contributions only from terms of dimension one in this expansion, and so we find

〈〈Υ̃φ(q̄1, q̄2)O1(q̄3)〉〉 =
1

16
(ā212 − 2b̄12 − q̄23)〈〈O1(q̄3)O1(−q̄3)〉〉,

〈〈Υ̃(s2)
φ (q̄1, q̄2)O1(q̄3)〉〉 =

3

32
q̄23Θ

(s2)
3 (q̄i)〈〈O1(q̄3)O1(−q̄3)〉〉. (5.15)

Substituting these expressions into (5.12), we obtain

〈〈T̃φ(q̄1)O1(q̄2)O1(q̄3)〉〉 = −〈〈O1(q̄2)O1(−q̄2)〉〉 − 〈〈O1(q̄3)O1(−q̄3)〉〉,

〈〈T̃φ(q̄1)T̃φ(q̄2)O1(q̄3)〉〉 =
1

8
(ā212 − 2b̄12 − q̄23)〈〈O1(q̄3)O1(−q̄3)〉〉,

〈〈T̃φ(q̄1)T̃ (s2)
φ (q̄2)O1(q̄3)〉〉 =

3

16
q̄23Θ

(s2)
3 (q̄i)〈〈O1(q̄3)O1(−q̄3)〉〉, (5.16)

〈〈T̃φ(q̄1)T̃φ(q̄2)T̃φ(q̄3)〉〉 = 0, (5.17)

where for the latter equation we used (4.31). The trace Ward identities thus supply all

terms appearing on the r.h.s. of (5.2) that involve the trace T̃φ.

5.3 Conformal Ward identities

In the previous subsection we showed how the trace Ward identities determine the 3-point

functions involving the trace of the stress tensor in terms of 2-point functions. Thus to

determine all correlation functions, it remains to obtain

〈T (s1)T (s2)T (s3)〉, 〈O1T̃
(s2)
φ T̃

(s3)
φ 〉, 〈O1O1T̃

(s3)
φ 〉, 〈O1O1O1〉, 〈O1O1〉.

(5.18)

These may be directly computed using the methods described in appendix B. For conformal

scalars and fermions, the result for 〈T (s1)T (s2)T (s3)〉 is given in (4.15) and (4.26). The

remaining correlators are found to be (we suppress a common overall factor of N̄2Nφ )

〈〈O1(q̄)O1(−q̄)〉〉 =
1

4q̄
,

〈〈O1(q̄1)O1(q̄2)O1(q̄3)〉〉 =
1

c̄123
,

〈〈T̃ (s1)
φ (q̄1)O1(q̄2)O1(q̄3)〉〉 =

λ̄2

16
√
2

(2q̄1 + ā23)

ā2123b̄23q̄
2
1

,

〈〈T̃ (+)
φ (q̄1)T̃

(−)
φ (q̄2)O1(q̄3)〉〉 =

1

2048 b̄212q̄3
(q̄23 − ā212 + 4b̄12)

2(ā212 + 2b̄12 − 5q̄23),

〈〈T̃ (+)
φ (q̄1)T̃

(+)
φ (q̄2)O1(q̄3)〉〉 =

(ā12 − q̄3)
2

2048 ā2123b̄
2
12q̄3

[
− 5q̄63 − 20ā12q̄

5
3 − (29ā212 + 6b̄12)q̄

4
3

− 8ā12(2ā
2
12 + 3b̄12)q̄

3
3 + ā212(ā

2
12 − 36b̄12)q̄

2
3

+ 4ā312(ā
2
12 − 6b̄12)q̄3 + ā612 − 6ā412b̄12 + 32b̄312

]
. (5.19)
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Subsituting these expressions into (5.2), along with those in (5.16), we recover all the results

for minimal scalars listed in (4.8) that involve the trace Tφ. (One may additionally check

we recover the result for 〈TφTφTφ〉 in equation (101) of [4].)

The correlation functions (5.19) are almost uniquely determined by conformal Ward

identities. This was discussed in position space in [14], and more recently in momentum

space in [7] (see also [26]). More precisely, the 3-point function of the stress tensor is unique,

up to two constants (which is our case may be taken to be the number of conformal scalars

and the number of free fermions), and all remaining 3-point functions are unique up to

an overall constant. Thus, a non-trivial check of the correlators listed above is to verify

that they indeed satisfy the special conformal Ward identities. (The scale Ward identity

is satisfied by inspection.) These identities take the form of differential equations that the

correlators must satisfy, and are listed explicitly in appendix D.1 (they may be obtained

by Fourier transforming the position space Ward identities whose derivation is discussed,

for example, in [27]). We have checked that our conformal correlators satisfy these Ward

identities.

6 Holographic predictions for cosmological 3-point functions

Having computed all relevant QFT quantities we can now evaluate the holographic for-

mulae. It is instructive to first use the trace Ward identities and the relation of minimal

scalars to conformal scalars in order to express the cosmological 3-point functions in terms

of CFT correlations functions. This yields

〈〈ζ(q1)ζ(q2)ζ(q3)〉〉 = − 24

N4N 2
(B)

∏3
i=1

(
q4i 〈〈O1(qi)O1(−qi)〉〉

)

×
[
q21q

2
2q

2
3〈〈O1(q1)O1(q2)O1(q3)〉〉

+
(
2q21(q

2
1 − q22 − q23)〈〈O1(q1)O1(−q1)〉〉+ 2 perm.

)]
,

〈〈ζ(q1)ζ(q2)γ̂(s3)(q3)〉〉 = − 211

N4N(A)N(B)q
3
3

∏2
i=1

(
q4i 〈〈O1(qi)O1(−qi)〉〉

)

×
[
q21q

2
2〈〈O1(q1)O1(q2)T̃

(s3)
φ (q3)〉〉

+
(
q41Θ

(s3)
1 (qi)〈〈O1(q1)O1(−q1)〉〉+ (q1 ↔ q2)

)]
,

〈〈ζ(q1)γ̂(s2)(q2)γ̂(s3)(q3)〉〉 = − 214

N4N 2
(A)q

3
2q

3
3q

4
1〈〈O1(q1)O1(−q1)〉〉

×
[
16q21〈〈O1(q1)T̃

(s2)
φ (q2)T̃

(s3)
φ (q3)〉〉

+ q41

(
2θ(s2s3)(qi)−Θ(s2s3)(qi)

)
〈〈O1(q1)O1(−q1)〉〉

]
,

(6.1)

where N(A) and N(B) are defined in (4.6) and we have made the dependence on the number

of fields explicit by considering the O1 and T̃
(s)
φ correlators to be those of a single field. (The

analytic continuation (3.8) has also been implicitly performed; the correlators appearing
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above are therefore those in (5.19) with q̄i replaced by qi.) As discussed in the previous

section, the trace Ward identities imply that the numerators of the holographic formu-

lae (3.3)–(3.5) for the above correlators receive no contribution from conformal fields and

are therefore proportional to N(B), the number of non-conformal fields. The dependence

of these correlators on the field content is then simply given by an overall factor, amount-

ing to N(B) divided by the corresponding factors in the denominators of the holographic

formulae.

For the γ̂γ̂γ̂ correlator, we find

〈〈γ̂(s1)(q1)γ̂(s2)(q2)γ̂(s3)(q3)〉〉

= − 224

N4N 3
(A)q

3
1q

3
2q

3
3

[
Nψ

(
2〈〈T (s1)

ψ T
(s2)
ψ T

(s3)
ψ 〉〉 − Θ(s1s2s3)(qi)

512

3∑

i=1

q3i

)

+ (Nφ +Nχ +NA)

(
2〈〈T (s1)

χ T (s2)
χ T (s3)

χ 〉〉 − Θ(s1s2s3)(qi)

512

3∑

i=1

q3i

)]
, (6.2)

considering again the correlators to be those of a single field so as to make the dependence

on the number of fields explicit. It then turns out that

2〈〈T (+)
χ T (+)

χ T (−)
χ 〉〉 = 〈〈T (+)

ψ T
(+)
ψ T

(−)
ψ 〉〉+ Θ(++−)(qi)

1024

3∑

i=1

q3i , (6.3)

i.e., these correlators differ only by the helicity projection of a semi-local term. Thus,

while the 3-point function of the stress tensor at separated points in general depends on

two constants in d = 3 [14], only one combination survives the (++−) helicity projection.

(This was also shown in [7] using the conformal Ward identities.) The specific form of the

semi-local term in (6.3) is then such that the γ̂(+)γ̂(+)γ̂(−) correlation function depends on

the field content through an overall multiplicative constant only. On the other hand,

2〈〈T (+)
χ T (+)

χ T (+)
χ 〉〉 = 〈〈T (+)

ψ T
(+)
ψ T

(+)
ψ 〉〉+ Θ(+++)(qi)

1024

3∑

i=1

q3i +
λ2

128
√
2

c123
a4123

, (6.4)

and so these correlators differ by the helicity projections of both a semi-local and a non-

local term. The non-local term reflects the fact that both solutions for the 3-point function

of the stress tensor at separated points survive the (+ + +) helicity projection, and leads

in turn to a more complicated dependence on the QFT field content in the γ̂(+)γ̂(+)γ̂(+)

correlator.

Returning to (6.1) and substituting in our results for the remaining correlators, we

first recover the result derived in [4],

〈〈ζ(q1)ζ(q2)ζ(q3)〉〉 =
512

N 2
(B)N

4

(∏

i

q−3i

)(
−2q1q2q3 −

∑

i

q3i + (q1q
2
2 + 5perms)

)

=
512

N 2
(B)N

4

λ2

a123c3123
, (6.5)
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showing that the scalar bispectrum exactly coincides with the equilateral template. In the

first line, note that all the terms but the one proportional to q1q2q3 originate from semi-

local terms in the numerator of the holographic formula (3.3). Without their contribution

we would not have been able to distinguish the equilateral shape from others involving a

similar factor of q1q2q3 in the numerator (for example, the orthogonal shape [28], for which

the corresponding numerator is −8q1q2q3 − 3
∑

i q
3
i + 3(q1q

2
2 + 5perms)). In fact, due to

the factor of
∏
i q
−3
i coming from the product of 2-point functions in the denominator of

the holographic formula, the semi-local term
∑

i q
3
i in the numerator generates a contribu-

tion to the bispectrum of exactly the ‘local’ type. It is therefore essential to include the

contribution of all semi-local terms in the holographic formulae, as we have been careful

to do.

For the remaining correlators, we find

〈〈ζ(q1)ζ(q2)γ̂(+)(q3)〉〉 =
2048√

2N4N(A)N(B)

λ2

a2123c
3
123q

2
3

[
(a3123 − a123b123 − c123)− a123q

2
3

]
,

〈〈ζ(q1)γ̂(+)(q2)γ̂
(+)(q3)〉〉 = − 512

N4N 2
(A)b

5
23q

2
1

(q21 − a223)
2
[
(q21 − a223 + 2b23) +

32b323
a4123

]
,

〈〈ζ(q1)γ̂(+)(q2)γ̂
(−)(q3)〉〉 = − 512

N4N 2
(A)b

5
23q

2
1

(q21 − a223 + 4b23)
2(q21 − a223 + 2b23),

〈〈γ̂(+)(q1)γ̂
(+)(q2)γ̂

(+)(q3)〉〉 =
1024√

2N4N 2
(A)

λ2a2123
c5123

[
(a3123 − a123b123 − c123)−

(
1− 4

Nψ

N(A)

)64c3123
a6123

]
,

〈〈γ̂(+)(q1)γ̂
(+)(q2)γ̂

(−)(q3)〉〉 =
1024√

2N4N 2
(A)

λ2

a2123c
5
123

(q3 − a12)
4(a3123 − a123b123 − c123). (6.6)

We would now like to define corresponding shape functions, i.e., we wish to write these

correlators as bispectra: a product of power spectra times a shape function. To do so, we

first define the dimensionless 2-point amplitudes

A(ζζ) = q3〈〈ζ(q)ζ(−q)〉〉 = 32

N2N(B)
, A(γ̂γ̂) = q3〈〈γ̂(+)(q)γ̂(+)(−q)〉〉 = 256

N2N(A)
, (6.7)

and similarly the dimensionless 3-point amplitudes, e.g.,

A(ζζγ̂(+)) = q21q
2
2q

2
3 〈〈ζ(q1)ζ(q2)γ̂(+)(q3)〉〉, (6.8)

with analogous expressions for the other correlators. Physically, these quantitites

parametrise the contribution per logarithmic interval of wavenumbers to the corresponding

position-space expectation values with all insertions at the same point, e.g.,

〈ζ2(~x)〉 = 1

2π2

∫
(d ln q)A(ζζ), 〈ζ2(~x)γ̂(+)(~x)〉 = 1

8π4

∫ (∏

i

d ln qi

)
A(ζζγ̂(+)),

(6.9)

where the latter integral ranges over all possible triangle side lengths in momentum space.

(For reference, the usual logarithmic power spectrum is simply ∆2
ζ = (1/2π2)A(ζζ).) The
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dimensionless 3-point amplitudes may now be naturally re-expressed as a product of di-

mensionless 2-point amplitudes and a purely momentum-dependent shape function:

A(ζζγ̂(s3)) = A(ζζ)A(γ̂γ̂)S(ζζγ̂(s3)), A(ζγ̂(s2)γ̂(s3)) = A2(γ̂γ̂)S(ζγ̂(s2)γ̂(s3)),
A(γ̂(s1)γ̂(s2)γ̂(s)) = A2(γ̂γ̂)S(γ̂(s1)γ̂(s2)γ̂(s)). (6.10)

Explicitly, the shape functions are given by

S(ζζγ̂(+)) =
1

4
√
2

λ2

a2123c123q
2
3

[
(a3123 − a123b123 − c123)− a123q

2
3

]
,

S(ζγ̂(+)γ̂(+)) = − 1

128b323
(q21 − a223)

2

[
(q21 − a223 + 2b23) +

32b323
a4123

]
,

S(ζγ̂(+)γ̂(−)) = − 1

128b323
(q21 − a223 + 4b23)

2(q21 − a223 + 2b23),

S(γ̂(+)γ̂(+)γ̂(+)) =
1

64
√
2

λ2a2123
c3123

[
(a3123 − a123b123 − c123)−

(
1− 4

Nψ

N(A)

)64c3123
a6123

]
,

S(γ̂(+)γ̂(+)γ̂(−)) =
1

64
√
2

λ2

a2123c
3
123

(q3 − a12)
4(a3123 − a123b123 − c123). (6.11)

Thus, with the sole exception of S(γ̂(+)γ̂(+)γ̂(+)), all the shape functions defined in this

manner are independent of the field content of the dual QFT. (Indeed, this was our mo-

tivation in selecting the factors of A(ζζ) and A(γ̂γ̂) appearing in (6.10).) From our pre-

vious discussion, we see that for the shape functions involving one or more factors of ζ

this property is a consequence of the trace Ward identities, which limit the field content-

dependence of the corresponding bispectra to a single overall factor. The independence of

S(γ̂(+)γ̂(+)γ̂(−)) from the QFT field content arises similarly from the fact that the corre-

sponding bispectrum depends on the field content via an overall factor only. As we saw

above, this latter property relies on both the conformal Ward identities and the precise

form of the semi-local terms appearing in the holographic formula.

We have plotted the holographic shape functions in figures 2 and 3 (along with their

counterparts for slow-roll inflation which we discuss in the next section). In these figures

we have adopted the expedient of scaling all momenta such that q1 + q2 + q3 = 1 (note

that the shape functions are invariant under a constant rescaling of all momenta). By the

usual triangle inequalities, the allowed range for any two momenta, say q1 and q2, is then

0 ≤ q1 ≤ 1/2 and 1/2 − q1 ≤ q2 ≤ 1/2 as displayed. In each case, we have chosen to plot

the two momenta under whose interchange the shape function is symmetric.

Note that the usual plotting convention adopted for the scalar bispectrum S(ζζζ)
(namely, ordering the momenta q1 ≥ q2 ≥ q3 and then scaling q1 to unity, with the triangle

inequality then constraining q2 ≥ 1−q3) is not applicable to the correlators considered here,

since in each case (with the sole exception of S(γ̂(+)γ̂(+)γ̂(+))) one of the three momenta

is distinguished and so the required ordering of momenta cannot be accomplished without

loss of generality. Without this initial ordering step, rescaling one of the momenta to unity

then fails to yield an upper bound on the magnitude of the remaining momenta, resulting

in a plot with unbounded area. This problem is neatly sidestepped by constraining the

total perimeter of the triangle to be unity, instead of the length of one the sides.
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(a) S(γ̂(+)γ̂(+)γ̂(−))

(b) S(γ̂(+)γ̂(+)γ̂(+)) (c) SSR(γ̂
(+)γ̂(+)γ̂(+)) (d) ∆S(γ̂(+)γ̂(+)γ̂(+))

(e) S(ζζγ̂(+)) (f) SSR(ζζγ̂
(+)) (g) ∆S(ζζγ̂(+))

Figure 2. Isoperimetric plots displaying the holographic and slow-roll shape functions, as well

as the difference between them (e.g., ∆S(γ̂(+)γ̂(+)γ̂(+)) = S(γ̂(+)γ̂(+)γ̂(+)) − SSR(γ̂(+)γ̂(+)γ̂(+))).

The invariance of the shape functions under a rescaling qi → λqi of all momenta has been exploited

to set q1 + q2 + q3 = 1, constraining the allowed momentum values to those displayed. Each plot is

symmetric under interchange of the appropriate momenta as expected. Note that S(γ̂(+)γ̂(+)γ̂(−))

(shown in plot (a)) coincides for the holographic and slow-roll models. In plots (2b) and (2d) we

have set Nψ = N(A) to maximise ∆S(γ̂(+)γ̂(+)γ̂(+)) for illustrative purposes.
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(a) S(ζγ̂(+)γ̂(+)) (b) SSR(ζγ̂
(+)γ̂(+)) (c) ∆S(ζγ̂(+)γ̂(+))

(d) S(ζγ̂(+)γ̂(−)) (e) SSR(ζγ̂
(+)γ̂(−)) (f) ∆S(ζγ̂(+)γ̂(−))

Figure 3. Isoperimetric plots for holographic and slow-roll shape functions continued. In plots (3d)

and (3e) note that both shape functions are actually finite along the line q3 = 1/2−q2 (i.e., q1 = 1/2);

we have simply restricted the plot range to exhibit the overall shape more clearly.

7 Comparison with slow-roll results

Slow-roll inflation predicts the correlators of three gravitons are

〈〈γ̂(+)(q1)γ̂
(+)(q2)γ̂

(+)(q3)〉〉SR =
κ4H4

∗

64
√
2

λ2a2123
c5123

(a3123 − a123b123 − c123),

〈〈γ̂(+)(q1)γ̂
(+)(q2)γ̂

(−)(q3)〉〉SR =
κ4H4

∗

64
√
2

λ2

a2123c
5
123

(q3 − a12)
4(a3123 − a123b123 − c123). (7.1)

We may recover these results exactly from our holographic model by setting

2Nψ = Nφ +NA +Nχ,
1

256
N2N(A) =

1

κ2H2
∗

. (7.2)

In particular, the latter relation is also consistent with matching the amplitude of the gravi-

ton 2-point function of slow-roll inflation and the holographic model. The first relation is

consistent with that found in v2 of [7] for the special case where NA = Nφ = 0. (Note

however that our careful treatment of the semi-local terms in the holographic formulae

enables us to correctly recover the entire slow-roll bispectrum (7.1).) For general QFT

field content (for which the first relation in (7.2) is not satisfied), the γ̂(+)γ̂(+)γ̂(+) and

γ̂(+)γ̂(+)γ̂(−) holographic bispectra in (6.6) coincide precisely with the corresponding bis-

pectra derived in [7] for slow-roll inflation in which one includes an additional term in the
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action proportional to the Weyl tensor cubed. Relative to [7], our QFT additionally con-

tains non-conformal fields, and our treatment of the semi-local terms enables us to recover

the cosmological result exactly.

The remaining slow-roll results are

〈〈ζ(q1)ζ(q2)γ̂(+)(q3)〉〉SR =
κ4H4

∗

16
√
2ǫ∗

λ2

a2123c
3
123q

2
3

[
a3123 − a123b123 − c123

]
,

〈〈ζ(q1)γ̂(+)(q2)γ̂
(+)(q3)〉〉SR = − κ4H4

∗

128b523q
2
1

(q21 − a223)
2

[
(q21 − a223 + 2b23)−

8b223
q1a123

]
,

〈〈ζ(q1)γ̂(+)(q2)γ̂
(−)(q3)〉〉SR = − κ4H4

∗

128 b523q
2
1

(q21 − a223 + 4b23)
2

[
(q21 − a223 + 2b23)−

8b223
q1a123

]
.

(7.3)

While these differ from the predictions of the holographic model, interestingly the difference

is only in the last term.

Evaluating the shape functions, for slow-roll inflation the 2-point amplitudes defined

analogously to (6.7) are

ASR(ζζ) =
κ2H2

∗

4ǫ∗
, ASR(γ̂γ̂) = κ2H2

∗ . (7.4)

The slow-roll shape functions then differ from their holographic counterparts by at most a

single term:

SSR(ζζγ̂(+)) = S(ζζγ̂(+)) +
1

4
√
2

λ2

a123c123
,

SSR(ζγ̂(+)γ̂(+)) = S(ζγ̂(+)γ̂(+)) +
1

16a123c123
(q21 − a223)

2
(
1 +

4c123
a3123

)
,

SSR(ζγ̂(+)γ̂(−)) = S(ζγ̂(+)γ̂(−)) +
1

16a123c123
(q21 − a223 + 4b23)

2,

SSR(γ̂(+)γ̂(+)γ̂(+)) = S(γ̂(+)γ̂(+)γ̂(+)) +
λ2√
2 a4123

(
1− 4Nψ

N(A)

)
,

SSR(γ̂(+)γ̂(+)γ̂(−)) = S(γ̂(+)γ̂(+)γ̂(−)). (7.5)

The holographic and slow-roll shape functions, as well as the difference terms in the ex-

pressions above, are plotted in figures 2 and 3. From these figures it is apparent that the

holographic and slow-roll shape functions share the same broad qualititative features in all

cases except for ζγ̂(+)γ̂(+): here, SSR(ζγ̂(+)γ̂(+)) has a simple pole as the momentum q1
associated with ζ vanishes, whereas the corresponding holographic shape function has a

zero.

At a more quantitative level, a rough indication of the distinguishability of the holo-

graphic and slow-roll shape functions may be obtained by evaluating the cosine orthogo-

nality measure proposed in [29] (following earlier work in [30]),

C(S,S ′) = F (S,S ′)√
F (S,S)F (S ′,S ′)

, (7.6)
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where the weighted inner product

F (S,S ′) =
∫

dq1dq2dq3
1

a123
S(q1, q2, q3)S ′(q1, q2, q3). (7.7)

Writing q1 = αq̂1, q2 = αq̂2 and q3 = α(1− q̂1− q̂2), the integral over α in the inner product

factors out, since all shape functions we consider here are scale-invariant, i.e., independent

of α. This overall factor may then be discarded since its contribution to the cosine measure

C(S,S ′) cancels between numerator and denominator. We may thus replace (7.7) with the

two-dimensional integral

F (S,S ′) =
∫

dq̂1dq̂2S(q̂1, q̂2, 1− q̂1 − q̂2)S ′(q̂1, q̂2, 1− q̂1 − q̂2), (7.8)

where the shape functions here are precisely the isoperimetric shape functions plotted in

figure 2 and 3.

Naively, one might expect the domain of integration would be 0 < q̂1 < 1/2 and

1/2− q̂1 < q̂2 < 1/2. Since however several of the shape functions have poles when one or

more of the triangle sides are taken to zero, as we see from figures 2 and 3, one must further

restrict the domain of integration in order to obtain finite inner products. The physical

justification for this procedure is that any real observation is only sensitive to momenta

in some range qmin < qi < qmax. We will therefore restrict all rescaled momenta q̂i > ǫ,

where the cutoff ǫ = qmin/2qmax ∼ 5× 10−4. The domain of integration 0 < q̂1 < 1/2 and

1/2− q̂1 < q̂2 < 1/2 is thus further restricted by the conditions q̂1 > ǫ, q̂2 > ǫ, and 1− q̂2−
q̂3 > ǫ. For shape functions with poles at the corners, the orthogonality measure (7.6) will

depend on the cutoff ǫ, reflecting the fact that our ability to resolve the shape functions

concerned depends on how sensitive we are to the corners of the distribution.

Having thus carefully defined the orthogonality measure, one may now numerically

evaluate the orthogonality measure between each holographic shape function and its slow-

roll counterpart. Rounding to two decimal places,

C(γ̂(+)γ̂(+)γ̂(+))≈1.00, C(ζγ̂(+)γ̂(+))=0.33, C(ζγ̂(+)γ̂(−))=0.67, C(ζζγ̂(+))≈1.00.

Values close to unity indicate nearly indistinguishable shape functions, while smaller values

correspond to shape functions that are more orthogonal. (For comparison, the overlap

between the standard local and equilateral shape functions evaluates to C = 0.34 with our

cutoff prescription.) Overall, these values confirm one’s impression by eye from figures 2

and 3; namely, that the holographic and slow-roll shape functions are nearly indistiguishable

for the cases γ̂(+)γ̂(+)γ̂(+) and ζζγ̂(+), while in the case ζγ̂(+)γ̂(+) the two shape functions

may be distinguished by the presence or absence of a pole as the momentum q1 associated

with ζ vanishes.

8 Discussion

In this paper we computed the complete set of bispectra (and defined and extracted the

corresponding shapes9) for a class of holographic models of the very early universe based

9To our knowledge, shapes other than those relevant for purely scalar or purely tensor bispectra have

not been discussed before.
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on perturbative QFT. The leading 1-loop result actually depends only on the free part of

the QFT, so in particular our results are also the complete answer when the dual QFT is

free. The field content of the dual theory includes gauge fields, massless fermions, massless

minimal and conformal scalars and thus the parameters that can appear in the results are

the number of species for each type of field. The bispectra could, a priori, depend on these

in a complicated way, but it turns out that we get instead (nearly) universal results that

are independent of all details of the dual QFT, within the class of the theories we consider.

Thus, these models make clean and precise predictions.

One can trace this universality to the specific form of the holographic map, the fact

that to leading order the QFT is free, symmetry considerations and properties of d = 3

theories. Let us explain this. Firstly, in three dimensions, vectors are dual to scalars so

one may anticipate that the contribution due to gauge fields (at 1-loop order) is equal to

that of the contribution due to mininal scalars, and we indeed find this to be the case.

Taking this into account, the answer could then depend on three parameters, the number

of conformal scalars, Nχ, the number of fermions, Nψ and the total number of gauge fields

plus minimal scalars, N(B). The trace Ward identity of the dual QFT and the specific

form of the holographic formulae then imply that, in all correlators involving at least one

factor of ζ, the field content appears only as a multiplicative factor and is such that the

corresponding shape functions are completely independent of the field content.

Let us now turn to correlators involving only tensors: these are effectively determined

by the 3-point function of the stress tensor of a CFT. In three dimensions, this 3-point

function is parametrised by two constants, which in our case are related to the field con-

tent. Indeed, the shape corresponding to three positive helicity gravitons does depend

on the field content, but surprisingly the shape for two positive and one negative helicity

graviton is independent of the field content. This can be explained in part by the fact that

the 〈T (+)T (+)T (−)〉 correlator (at separated points) is actually uniquely fixed by confor-

mal invariance up to a single constant. We emphasize however that this by itself is not

sufficient to explain the independence of the corresponding shape function from the field

content, as the specific form of the semi-local terms (both in the holographic map and in

〈T (+)T (+)T (−)〉) is crucial for this to happen.

Our calculations carefully include all such semi-local contributions. In the holographic

formulae for the bispectra, these contributions appear as terms in the numerator that are

non-analytic in only one of the three momenta. Since the denominator of the holographic

formulae is however non-analytic in all three momenta, the net contribution of these semi-

local terms to the bispectra is in fact non-analytic in two of the three momenta. Semi-local

terms in the holographic formulae may thus contribute, for example, to ‘local’-type non-

Gaussianity behaving as 1/q31q
3
2 + perms. Contributions of this nature therefore play a

crucial role in allowing different cosmological shapes to be distinguished.

To get a feeling for our results we also computed the corresponding slow-roll results

and compared them with the holographic results. Firstly, comparing the power spectra

one obtains a relation between the parameters N2, N(A) and N(B) of the QFT and the

parameters κ2, H2
∗ and ǫ∗ of the slow-roll model. Comparing the 3-point functions, we

find that the γ̂(+)γ̂(+)γ̂(−) correlators agree exactly, while the γ̂(+)γ̂(+)γ̂(+) correlators can
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be made to agree if one imposes that that the field content satisfies the relation 2Nψ =

Nφ + NA + Nχ. As explained in [7], these slow-roll correlators are constrained by the

late-time de Sitter isometries to satisfy conformal Ward identities, and thus at separated

points they should be expressible in terms of the 3-point functions of conformal scalars and

free fermions. Indeed, the linear combination found in v2 of [7] is the same as the one we

find (setting Nφ = NA = 0 in our relation). By taking into account the contribution from

semi-local terms, however, we are further able to correctly recover every individual term

appearing in the graviton bispectra.

There is no apparent reason for the remaining slow-roll and holographic correlators to

agree. Nevertheless we find rather similar results. To quantify the difference we used the

cosine orthogonality measure of [29] to obtain a first indication of the distinguishability of

the corresponding shapes. We find that the shapes for ζζγ̂(s) are nearly indistinguishable,

while for ζγ̂(+)γ̂(+), the two shapes may be distinguished (as a consequence of differing

behaviour in the squeezed limit where the momentum associated with the ζ goes to zero),

with the case of ζγ̂(+)γ̂(−) lying in between.

All in all, we have a rather complete understanding of this class of models and their

phenomenology. There are still a few things to be understood better: what constrains

the semi-local contributions to the tensor correlators, and why are the holographic results

apparently close to slow-roll ones? One can presumably also understand the squeezed

limit of the correlators using Ward identities. On a whole, however, the structure of these

models is reasonably firmly understood. It would be interesting to arrive at a similar

level of understanding for the class holographic models that are based on deformations of

conformal field theories.
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A Helicity tensors

This appendix summarises our notation and conventions for helicity tensors and their

contractions. To facilitate the comparison of our results with those of [7], we also briefly

review the spinor helicity formalism of this latter work.

We use helicity tensors ǫ
(s)
ij (~̄q) satisfying the standard identities

Πijkl(q̄) =
1

2
ǫ
(s)
ij (~̄q)ǫ

(s)
kl (−~̄q), ǫ

(s)
ij (~̄q)ǫ

(s′)
ij (−~̄q) = 2δss

′

. (A.1)
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where helicities si take values ±1 and our conventions for are those of [31] (see p. 233)). We

may go from a tensor basis to a helicity basis by contracting with ǫ
(s)
ij (~̄q). Explicitly, the

trace and helicity components of the stress tensor Tij and the Υijkl tensor are defined by

T (q̄) = δijTij(q̄), T (s)(q̄) =
1

2
ǫ
(s)
ij (−~̄q)Tij(q̄),

Υ(q̄1, q̄2) = δijδklΥijkl(q̄1, q̄2), Υ(s)(q̄1, q̄2) =
1

2
δijǫ

(s)
kl (−~̄q2)Υijkl(q̄1, q̄2),

Υ(s1s2)(q̄1, q̄2) =
1

4
ǫ
(s1)
ij (−~̄q1)ǫ(s2)kl (−~̄q2)Υijkl(q̄1, q̄2). (A.2)

The various contractions of helicity tensors appearing in the main text are

Θ
(s3)
1 (q̄i) = πij(q̄1)ǫ

(s3)
ij (−~̄q3), Θ

(s3)
2 (q̄i) = πij(q̄2)ǫ

(s3)
ij (−~̄q3),

Θ(s2s3)(q̄i) = πij(q̄1)ǫ
(s2)
ik (−~̄q2)ǫ(s3)kj (−~̄q3), θ(s2s3)(q̄i) = ǫ

(s2)
ij (−~̄q2)ǫ(s3)ij (−~̄q3),

Θ(s1s2s3)(q̄i) = ǫ
(s1)
ij (−~̄q1)ǫ(s2)jk (−~̄q2)ǫ(s3)ki (−~̄q3), (A.3)

where the projection operator πij is given in (2.5).

We may explicitly evaluate these contractions in terms of the magnitudes qi of the

momenta and the helicities si by introducing a basis for the helicity tensors. To do so,

we first observe that the momenta ~̄qi lie in a single plane due to momentum conservation.

Taking this plane to be the (x, z) plane, we may then write

~̄qi = q̄i(sin θi, 0, cos θi) (A.4)

where the magnitudes q̄i ≥ 0, and without loss of generality we may choose θ1 = 0,

0 ≤ θ2 ≤ π and π ≤ θ3 ≤ 2π so that

cos θ2 =
(q̄23 − q̄21 − q̄22)

2q̄1q̄2
, sin θ2 =

λ̄

2q̄1q̄2
, cos θ3 =

(q̄22 − q̄21 − q̄23)

2q̄1q̄3
, sin θ3 = − λ̄

2q̄1q̄3
,

(A.5)

with λ̄ as given in (4.2). The required helicity tensors then follow by rotation in the (x, z)

plane:

ǫ(si)(~̄qi) =
1√
2




cos2 θi isi cos θi − sin θi cos θi
isi cos θi −1 −isi sin θi

− sin θi cos θi −isi sin θi sin2 θi


 . (A.6)

The contractions of helicity tensors used in this paper are then

Θ
(±)
1 (q̄i) = − λ̄2

4
√
2b̄213

, Θ
(±)
2 (q̄i) = − λ̄2

4
√
2b̄223

,

Θ(+++)(q̄i) = − λ̄2ā2123
16
√
2c̄2123

, Θ(++−)(q̄i) = − λ̄2

16
√
2c̄2123

(q̄3 − ā12)
2,

θ(++)(q̄i) =
ā2123(ā23 − q̄1)

2

8b̄223
, θ(+−)(q̄i) =

(ā13 − q̄2)
2(ā12 − q̄3)

2

8b̄223
,

Θ(++)(q̄i) =
ā123(ā23 − q̄1)

16c̄2123

[
2q̄21 ā123(ā23 − q̄1)− λ̄2

]
,

Θ(+−)(q̄i) =
(ā13 − q̄2)(ā12 − q̄3)

16c̄2123

[
2q̄21(ā13 − q̄2)(ā12 − q̄3) + λ̄2

]
. (A.7)
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Let us now discuss the spinor helicity formalism introduced in [7]. For any three-

dimensional vector ~̄q we can consider a four-dimensional vector q̄µ = (q̄, ~̄q) which satisfies

q̄µq̄µ = 0. Therefore, ~̄q can be represented by spinors λa as q̄µ = σµȧaλ
aλ̄ȧ, where we use

the same conventions as in [7], namely

ǫab = ǫȧḃ = ǫaȧ =

(
0 1

−1 0

)
, σµab = (−δab, ~σµab),

λ̄ȧ = −ǫȧb(λb)∗, q̄µ1 q̄2µ = −2〈12〉〈1̄2̄〉,
〈12〉 = λ1aλ

a
2 = ǫabλ

a
1λ

b
2, 〈1̄2̄〉 = λ̄1ȧλ̄

ȧ
2 = ǫȧḃλ̄

ȧ
1λ̄

ḃ
2. (A.8)

Here, ~σµab is a vector of Pauli matrices. The spinors λ1a and λ2a corresponding to the two

momenta ~̄q1 and ~̄q2 are denoted by |1〉 and |2〉, respectively. Spinor indices are raised and

lowered by means of ǫab and its inverse.

To compare our results with those of [7], we need an explicit expression of the inner

products 〈12〉, etc., in terms of momenta. A possible solution for a spinor10 is

λa =



√

q̄−q̄3
2

−q̄1−iq̄2√
2(q̄−q̄3)


 =

√
q̄

(
sin
(
1
2θ
)

− cos
(
1
2θ
)
eiφ

)
, (A.9)

where the second expression makes use of the spherical coordinates

~̄q = q̄(sin θ cosφ, sin θ sinφ, cos θ). (A.10)

Choosing momenta ~̄q1 and ~̄q2 as in (A.4), and making use of (A.5), we find

〈12〉 = −√
q̄1q̄2 sin

(
1

2
θ2

)
= −1

2

√
(q̄1 + q̄2)2 − q̄23. (A.11)

In general the sign depends on the orientation of (~̄q1, ~̄q2). Since we choose 0 ≤ θ2 ≤ π, the

orientation is assumed to be positive. Note in particular that 〈21〉 = −〈12〉. Similarly, we

find

〈12̄〉 = 1

2

√
q̄23 − (q̄1 − q̄2)2 , 〈1̄2̄〉 = −1

2

√
(q̄1 + q̄2)2 − q̄23 = 〈12〉 , (A.12)

in agreement with (B.6) of [7]. Combining these results we find

[〈1̄2̄〉〈2̄3̄〉〈3̄1̄〉]2 =
λ̄2

64
ā2123 = − 1

2
√
2
c̄2123Θ

(+++)(q̄i),

[〈1̄2̄〉〈2̄3〉〈31̄〉]2 =
λ̄2

64
(ā12 − q̄3)

2 = − 1

2
√
2
c̄2123Θ

(++−)(q̄i), (A.13)

which we have made use of in the main text.

In four dimensions, the complexified symmetry group is locally isomorphic to SL(2,C)×
SL(2,C), in which case dotted and undotted indices transform independently. In our case,

10We corrected signs in (B.1) in v2 of [7] so that q̄µ = σ
µ
ȧaλ

aλ̄ȧ.
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however, the symmetry group is that of rotations of three-dimensional space, which corre-

sponds to SL(2,C) →֒ SL(2,C) × SL(2,C) embedded diagonally. An additional invariant

tensor therefore exists, which we may choose to be ǫaȧ: this means that we are now allowed

to contract dotted with undotted indices. In particular,

〈λλ̄〉 = λaǫȧaλ̄
ȧ = −λa(λa)∗ = −λ̄ȧ(λ̄ȧ)∗ = −q̄, (A.14)

motivating the following definition for complex conjugates

λȧ = (λ̄ȧ)∗ = −ǫȧaλa, λ̄a = (λa)
∗ = −ǫaȧλ̄ȧ. (A.15)

The helicity tensors used in [7] may now be defined as

ǫ
(s)abȧḃ
MP = ξ

(s)aȧ
MP ξ

(s)bḃ
MP , (A.16)

where

ξ
(+)aȧ
MP =

λ̄aλ̄ȧ

〈λ̄λ〉 , ξ
(−)aȧ
MP =

λaλȧ

〈λλ̄〉 . (A.17)

Contracting with Pauli matrices, we then find

ξ
(+)µ
MP = e−iφ




0

cos θ cosφ− i sinφ

cos θ sinφ+ i cosφ

− sin θ


 , ξ

(−)µ
MP = eiφ




0

cos θ cosφ+ i sinφ

cos θ sinφ− i cosφ

− sin θ


 . (A.18)

Since the time components vanish, we may regard the ξ
(s)µ
MP as three-dimensional vectors,

and if q̄µξ
(s)µ
MP = 0 in four dimensions, then clearly q̄iξ

(s)i
MP = 0 in three dimensions as well.

Let us now compare the vectors ξ
(s)µ
MP with those implicit in our own convention (A.6)

for the helicity tensors. In our case, we started with

ξ(s)µ(~̄q1) = (0, 1, is, 0) for q̄µ1 = (q̄1, 0, 0, q̄1), (A.19)

and then obtained all other ξ(s)µ(~̄q) by rotation in the (xz) plane. In this way, we find that

ξ
(+)µ
MP (~̄q) = e−iφξ(+)µ(−~̄q), ξ

(−)µ
MP (~̄q) = eiφξ(−)µ(−~̄q). (A.20)

Our normalisation of helicity tensors is then such that

ǫ
(s)
ij =

1√
2
ξ
(s)
i ξ

(s)
j , (A.21)

thus we find

ǫ
(s)
ij (~̄q) =

1√
2
ǫ
(s)
MP ij(−~̄q). (A.22)

Finally, we chose to define T (s)(~̄q) = 1
2ǫ

(s)
ij (−~̄q)Tij(~̄q) (so that Tij(~̄q) = T (s)(~̄q)ǫ

(s)
ij (~̄q)), which

leads to

T (s)(~̄q) =
1

2
√
2
T
(s)
MP(~̄q), (A.23)

where [7] defines instead T
(s)
MP(~̄q) = ǫ

(s)ij
MP (~̄q)Tij(~̄q).
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B Evaluation of integrals

To evaluate the holographic formulae (3.4)–(3.6) we must compute specific helicity projec-

tions of the stress tensor 3-point function. One option, discussed in section B.1 below, is

to project into a helicity basis at the very outset of the calculation, leaving only relatively

straightforward scalar integrals to evaluate. A second option, discussed in sections B.2

and B.3, is to directly evaluate the tensor integrals for the full 3-point function, project-

ing into a helicity basis only as the final step. While the evaluation of tensor integrals is

more demanding, the Ward identities permit a useful consistency check of the results. The

required evaluation of tensor integrals may be accomplished using either a method due to

Davydychev [32, 33], or else via a Feynman parametrisation approach, as discussed in sec-

tion B.2 and B.3 respectively. In practice, we computed integrals using all three methods

and cross-checked the results for each method against those of the others.

B.1 Helicity projection to scalar integrals

To illustrate the steps involved, let us consider the following integral derived from the

result (4.7) for minimal scalars

〈〈Tφ(q̄1)Tφ(q̄2)T (s3)
φ (q̄3)〉〉 = NφN̄

2

∫
[dq̄]

q̄ ·(q̄ + q̄1) (q̄ + q̄1)·(q̄ − q̄3) ǫ
(s3)
ij (−~̄q3)q̄iq̄j

q̄2(q̄ + q̄1)2(q̄ − q̄3)2
. (B.1)

Making use of the explicit basis (A.6), we find

√
2ǫ

(s3)
ij (−~̄q3)q̄iq̄j =

q̄2x cos
2 θ3 + q̄2z sin

2 θ3 − q̄2y − 2q̄xq̄z sin θ3 cos θ3 + 2is3q̄y q̄z sin θ3 − 2is3q̄xq̄y cos θ3. (B.2)

Since the external vectors ~̄qi all lie in the (x, z) plane and thus have no y-component, the

imaginary part of the integral (B.1) is odd under q̄y → −q̄y and therefore vanishes. To deal

with the remainder, it is then convenient to replace q̄2y = q̄2 − q̄2x− q̄2z and to substitute for

q̄z and q̄x according to

q̄z =
q̄ · q̄1
q̄1

, q̄x =
1

q̄3 sin θ3
q̄ · q̄3 −

cot θ3
q̄1

q̄ · q̄1. (B.3)

Here, trigonometric expressions involving θ3 are equivalent to specific combinations of

external momenta according to (A.5). Finally, using the standard replacements 2q̄ · q̄1 =

(q̄+ q̄1)
2 − q̄2 − q̄21, etc., the integral (B.1) may be reduced to a sum of elementary 2-point

integrals and a single 3-point integral,
∫
[dq̄]

1

q̄2(q̄ + q̄1)2(q̄ − q̄3)2
=

1

8q̄1q̄2q̄3
. (B.4)

(Note that this latter integral reduces to a standard 2-point integral upon substituting
~̄q ′ = ~̄q/q̄2 and ~̄q ′i = ~̄qi/q̄

2
i ).

The evaluation of all remaining helicity-projected 3-point integrals proceeds in a sim-

ilar fashion, the only complexity arising from the need to keep track of moderately large

expressions.
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B.2 Tensor integrals via Davydychev recursion

An elegant general method for evaluating tensor Feynman integrals corresponding to arbi-

trary 1-loop N -point diagrams was proposed by Davydychev in [32, 33]. Here, we review

its application to the tensor integrals appearing in our calculations of the stress tensor

3-point function.

Our goal will therefore be to evaluate massless 1-loop 3-point integrals of the general

form

Jµ1...µM (n; {νi}) ≡
∫

dnq̄
q̄µ1 . . . q̄µM

(q̄ + p̄1)2ν1(q̄ + p̄2)2ν2(q̄ + p̄3)2ν3
, (B.5)

where, for reasons that will be apparent shortly, we have kept the spacetime dimension

n, as well as the powers νi (where i = 1 . . . 3) appearing in the denominator, arbitrary.

We will temporarily denote spacetime indices with Greek letters to avoid confusion with

the index i. Note also that our choice of Euclidean signature will result in a few minor

changes11 with respect to the corresponding formulae reported in [32, 33]. The symmetric

form of the momenta in the denominator is convenient; to recover the form of the momenta

in the denominator used in the main text one simply shifts q̄µ → (q̄ − p̄3)µ (see figure 4).

In [32], a general formula was derived allowing the tensor integral (B.5) to be expressed

as a sum of symmetric tensors constructed from the spacetime metric and the external

momenta, multiplied by coefficients given in terms of scalar integrals of the form

J(n; {νi}) ≡
∫

dnq̄
1

(q̄ + p̄1)2ν1(q̄ + p̄2)2ν2(q̄ + p̄3)2ν3
. (B.6)

Explicitly, in Euclidean signature, this formula reads

Jµ1...µM (n; {νi}) =
∑

λ,κi
2λ+

∑
κi=M

(
−1

2

)λ(
− 1

π

)M−λ
(ν1)κ1(ν2)κ2(ν3)κ3

× {[g]λ[p̄1]κ1 [p̄2]κ2 [p̄3]κ3}µ1...µMJ(n+ 2(M − λ); {νi + κi}), (B.7)

where (ν)κ ≡ Γ(ν + κ)/Γ(ν) is the Pochhammer symbol and {[g]λ[p̄1]κ1 [p̄2]κ2 [p̄3]κ3}µ1...µM
denotes the symmetric tensor constructed out of λ copies of the metric tensor and κi copies

of each momenta p̄i. (Thus, for example, {gp̄1}µ1µ2µ3 = gµ1µ2 p̄1µ3 + gµ1µ3 p̄1µ2 + gµ2µ3 p̄1µ1 ,

where for present purposes the metric tensor gµν = δµν .) In the formula (B.7), the sum

runs over all possible non-negative values of λ and κi, such that the total rank 2λ+
∑

i κi
equals M . Note in particular that the values of n and νi appearing in the scalar coefficient

integrals differ from those appearing in the original tensor integral (B.5).

Equipped with the general formula (B.7), we may therefore reduce tensor integrals

of the form (B.5) to scalar integrals of the form (B.6). The evaluation scheme is then

completed by a set of recursion relations enabling the scalar integrals (B.6) to be reduced

11Alternatively, one could use the Lorentzian formulae quoted in [32, 33] and continue to Euclidean

signature after completing all computations.
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Figure 4. Labelling of momenta

to elementary integrals. In [33], it was shown that

J(n; {ν1, ν2, ν3 + 1}) = 1

2ν3q̄22 q̄
2
1

[(
(2ν1 + ν2 + ν3 − n)q̄21

+ (2ν2 + ν1 + ν3 − n)q̄22 − (2ν3 + ν1 + ν2 − n)q̄23
)
J(n; {ν1, ν2, ν3})

+ ν2q̄
2
1J(n; {ν1 − 1, ν2 + 1, ν3}) + ν1q̄

2
2J(n; {ν1 + 1, ν2 − 1, ν3})

+ ν3q̄
2
1J(n; {ν1 − 1, ν2, ν3 + 1})− ν1q̄

2
3J(n; {ν1 + 1, ν2, ν3 − 1})

+ ν3q̄
2
2J(n; {ν1, ν2 − 1, ν3 + 1})− ν2q̄

2
3J(n; {ν1, ν2 + 1, ν3 − 1})

]
, (B.8)

with similar formulae for J(n; {ν1+1, ν2, ν3}) and J(n; {ν1, ν2+1, ν3}) following by permu-

tation of indices. If we regard the indices (ν1, ν2, ν3) as coordinates on an integer lattice,

these recursion relations allow us to construct three integrals in the plane
∑

i νi = σ+1 in

terms of six contiguous integrals in the plane
∑

i νi = σ. Now, in general, we are interested

in the region νi ≥ 0. Any integrals on the boundary of this region may be evaluated triv-

ially: if more than one of the νi vanish the integral is zero in dimensional regularisation,

and if only one of the νi vanishes, the integral reduces to the standard 2-point integral

J(n; {ν1, ν2, 0}) =
Γ(ν1 + ν2 − n/2)Γ(n/2− ν1)Γ(n/2− ν2)

Γ(ν1)Γ(ν2)Γ(n− ν1 − ν2)
πn/2(q̄23)

n/2−ν1−ν2 . (B.9)

The first non-trivial integral for which all the νi > 0 is therefore J(n; {1, 1, 1}), which sits

in the plane σ = 3. From this integral, plus the appropriate ‘boundary’ integrals, we may

then use the recursion relations (B.8) to construct all the non-trivial integrals in the plane

σ = 4, namely J(n; {1, 1, 2}) and its permutations. Through repeated application of the

recursion relations, we may proceed to evaluate any integral with positive integer {νi} in

terms of the initial integral J(n; {1, 1, 1}) and boundary integrals of the form (B.9).

Examining the form of (B.7), we see that to evaluate a tensor integral of rank M in

three dimensions, we need to evaluate the corresponding scalar integrals J(n; {νi}), and
hence initial integrals J(n; {1, 1, 1}), in all odd dimensions 3 ≤ n ≤ 3 + 2M . As noted

in the previous subsection, the initial integral in three dimensions may be evaluated by
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inverting all momenta yielding

J(3; {1, 1, 1}) = π3

q̄1q̄2q̄3
. (B.10)

The higher odd-dimensional initial integrals may then be obtained using the additional

recursion relation

J(n+ 2; {1, 1, 1}) = 2π

(n− 2)(2H4 −H2
2 )

[πn/2+1Γ(n/2)

Γ(n− 1)
cosec

(nπ
2

)
(Hn−2H2 − 2Hn)

+ (q̄1q̄2q̄3)
2J(n; {1, 1, 1})

]
, (B.11)

where

Hn ≡ q̄n1 + q̄n2 + q̄n3 , (B.12)

which may be derived from (B.8) and the Euclidean analogue of equation (6) in [32].

Armed with the above analysis, the evaluation of tensor integrals of the form (B.5) is

now straightforward. For the computation of stress tensor 3-point functions in the main

text, we need to evaluate the six tensor integrals with ν1 = ν2 = ν3 = 1, n = 3 and ranks

M = 1 . . . 6. For the lower ranks the calculation may easily be executed by hand, yielding

for example
∫
[dq̄]

q̄µ
q̄2(q̄ − q̄1)2(q̄ + q̄2)2

=
1

8ā123c̄123
(q̄2q̄1µ − q̄1q̄2µ),

∫
[dq̄]

q̄µq̄ν
q̄2(q̄ − q̄1)2(q̄ + q̄2)2

=
1

16ā2123c̄123

(
ā123c̄123δµν + q̄2(ā13 + 2q̄2)q̄1µq̄2ν

+ q̄1(ā23 + 2q̄1)q̄2µq̄2ν − b̄12q̄1µq̄2ν
)
, (B.13)

but for the higher ranks it is convenient to automate the process. In the highest rank case

M = 6, we see from (B.7) we need to evaluate scalar integrals in planes up to σ = 9 (thus

requiring up to six iterations of the recursion relation (B.8)), for odd spacetime dimensions

up to n = 15. Having explicitly computed all tensor integrals up to rank six, any 3-point

function 〈〈Tij(q̄1)Tkl(q̄2)Tmn(q̄3)〉〉 may now be directly evaluated. After checking against

the Ward identities for consistency, the result may then be projected into the helicity basis.

B.3 Tensor integrals via Feynman parametrisation

In this third method, the correlation functions were again calculated directly in the tensor

representation 〈〈Ti1j1Ti2j2Ti3j3〉〉 and then projected into the helicity basis or traced. All

3-point functions we consider may be expressed as a sum of the integrals of the form
∫
[dq̄]

ti1j1i2j2i3j3
q̄2(q̄ − q̄1)2(q̄ + q̄2)2

, (B.14)

where ti1j1i2j2i3j3 is a tensor build up with q̄, q̄1, q̄2 and a metric δ. In order to calculate this

integral, Feynman parameters x1, x2, x3, such that x1 + x2 + x3 = 1, may be introduced.

This leads to the substitution q̄ = l̄ + x2q̄1 − x1q̄2 and the integral takes the form
∫
[dq̄]

ti1j1i2j2i3j3
q̄2(q̄ − q̄1)2(q̄ + q̄2)2

= 2

∫

[0,1]3
dX

∫
[dl̄]

ti1j1i2j2i3j3
(l̄2 +∆)3

, (B.15)
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where

dX = dx1dx2dx3δ(x1 + x2 + x3 − 1),

∆ = q̄21x2(1− x2) + q̄22x1(1− x1) + 2(q̄1 · q̄2)x1x2
= q̄21x2x3 + q̄22x1x3 + q̄23x1x2, (B.16)

and the integration is over the cube (x1, x2, x3) ∈ [0, 1]3. Finally, we decompose the

integral (B.15) into a linear combination of integrals of the form

2

∫
dXP (x1, x2, x3)

∫
[dl̄]

l̄i1 l̄j1 . . . l̄im l̄jm
(l̄2 +∆)3

, (B.17)

where P (x1, x2, x3) is some polynomial in Feynman parameters. The integral over momenta

may be evaluated by means of the formula

2

∫
[dl̄]

l̄i1 l̄j1 . . . l̄im l̄jm
(l̄2 +∆)3

=
Γ(3/2−m)

(4π)3/2
Si1j1...imjm

2m
∆m−3/2, (B.18)

where Si1j1...imjm is a completely symmetric tensor constructed from metric tensors with all

coefficients equal to one. Due to the l̄ 7→ −l̄ symmetry the integrals with an odd number

of momenta l̄ vanish.

The remaining task is to evaluate the integrals

∫
dXP (x1, x2, x3)∆

m−3/2 (B.19)

over the Feynman parameters. For d = 3, the r.h.s. of (B.18) is a well-defined expression

for any integer m, and (B.19) exists for any polynomial P and any non-negative m. It

turns out that in order to find all the integrals we need of the form (B.19), it is enough to

evaluate only one integral. This integral, coming from six l’s in the numerator of (B.17), is

∫
dX∆3/2 =

π

640 ā3123

[
3ā6123 − 9ā4123b̄123 + 3ā2123b̄

2
123 + 3ā3123c̄123 + 3ā123b̄123c̄123 + 2c̄2123

]
.

(B.20)

The remaining integrals we need may now be evaluated by the following tricks:

• Differentiating an integral with respect to q̄3 introduces Feynman parameters

x1x2, e.g.
∫

dXx1x2∆
1/2 =

1

3q̄3
· ∂

∂q̄3

∫
dX∆3/2. (B.21)

Notice that this operation decreases the power of ∆ by 1.
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• Integrals such as
∫
dXx21∆

1/2 cannot be obtained by the above method. In this case,

we may use the following formulae

k(q̄23 − q̄22)

∫
dXxn+1

1 ∆k−1

= (q̄2k3 − q̄2k2 )B(n+ k + 1, k + 1)− kq̄21

∫
dXxn1 (x3 − x2)∆

k−1,

k(q̄23 − q̄22)

∫
dXxn+1

1 xm2 ∆k−1

= q̄2k3 B(n+ k + 1,m+ k + 1)− kq̄21

∫
dXxn1x

m
2 (x3 − x2)∆

k−1

−m

∫
dXxn1x

m−1
2 ∆k, for m > 0, (B.22)

with numbers k, m and n such that these expressions exist, and where B is Euler’s

beta function. For example, taking k = 3/2, m = 0, n = 1 we find

∫
dXx21∆

1/2 =
q̄21

q̄23 − q̄22

[∫
dXx1x2∆

1/2 −
∫

dXx1x3∆
1/2

]
+

π

128

q̄22 + q̄2q̄3 + q̄23
q̄2 + q̄3

.

(B.23)

• Integrals with odd numbers of Feynman parameters may be obtained from the

integrals with even numbers of Feynman parameters by utilising the fact that

x1 + x2 + x3 = 1. For example,

∫
dXx1∆

1/2 =

∫
dXx21∆

1/2 +

∫
dXx1x2∆

1/2 +

∫
dXx1x3∆

1/2, (B.24)

where the integrals on the r.h.s. may be found in previous points.

• Iterating the trick described above we may find integrals with different powers of

∆, e.g.

∫
dX∆1/2 =

π

24 ā2123

[
ā3123 − ā123b̄123 − c̄123

]
,

∫
dX∆−1/2 =

π

ā123
,

∫
dX∆−3/2 =

2π

c̄123
. (B.25)

This method allows the exact tensor representation of any 3-point function we consider

in this paper to be calculated. However, since we are interested in the helicity representa-

tion, it can be significantly simplified. Any rank-six tensor ti1j1i2j2i3j3 built out of the metric

and two independent momenta may be represented as a sum of 499 simple tensors. In gen-

eral, the independent momenta may be different for different tensor indices: we choose to

use momenta q̄1 and q̄2 for i1 and j1 indices, q̄2 and q̄3 for i2 and j2 and q̄3, q̄1 for i3, j3. Due

to various symmetries and Ward identities on t, however, the number of independent ten-

sors is usually much smaller. If we consider a 3-point function 〈〈Ta1b1Ta2b2Ta3b3〉〉 projected
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onto the transverse-traceless part, we find only five independent coefficients, i.e.,

Πi1j1a1b1Πi2j2a2b2Πi3j3a3b3〈〈Ta1b1Ta2b2Ta3b3〉〉 (B.26)

= Πi1j1a1b1Πi2j2a2b2Πi3j3a3b3

[
A1(q̄1, q̄2, q̄3)δ

a1b2δa2b3δa3b1

+A2(q̄1, q̄2, q̄3)δ
a1b2δa2b3 q̄a31 q̄

b1
2 + (1 ↔ 3) + (2 ↔ 3)

+A3(q̄1, q̄2, q̄3)δ
a1a2δb1b2 q̄a31 q̄

b3
1 + (1 ↔ 3) + (2 ↔ 3)

+A4(q̄1, q̄2, q̄3)δ
a1a2 q̄b12 q̄

b2
3 q̄

a3
1 q̄

b3
1 + (1 ↔ 3) + (2 ↔ 3)

+A5(q̄1, q̄2, q̄3)q̄
a1
2 q̄

b1
2 q̄

a2
3 q̄

b2
3 q̄

a3
1 q̄

b3
1

]
.

The coefficients Aj may be easily expressed in terms of the coefficients of various tensors

appearing in 〈〈Ti1j1Ti2j2Ti3j3〉〉. Specifically, we see that

A1(q̄1, q̄2, q̄3) = 8 · coefficient of δi1j2δi2j3δi3j1 ,

A2(q̄1, q̄2, q̄3) = 8 · coefficient of δi1j2δi2j3 q̄i31 q̄
j1
2 ,

A3(q̄1, q̄2, q̄3) = 2 · coefficient of δi1i2δj1j2 q̄i31 q̄
j3
1 ,

A4(q̄1, q̄2, q̄3) = 4 · coefficient of δi1i2 q̄j12 q̄
j2
3 q̄

i3
1 q̄

j3
1 ,

A5(q̄1, q̄2, q̄3) = coefficient of q̄i12 q̄
j1
2 q̄

i2
3 q̄

j2
3 q̄

i3
1 q̄

j3
1 .

In other words, it is enough to calculate only five scalar integrals in order to evaluate the

five independent coefficients Aj .

Finally, to obtain the result in the helicity basis we may contract (B.26) with helicity

tensors. Using the identities (A.1) and (A.3) one finds five contractions of helicity tensors

corresponding to the independent transverse-traceless tensors. These results were checked

by a simple computer algebra program which carried out a brute force calculation of all

499 coefficients in 〈〈Ti1j1Ti2j2Ti3j3〉〉 before projecting the result into transverse-traceless

and helicity bases. (This procedure also enables checking against the Ward identities.)

Note this method also works if some indices are traced. In this case, the situation

is analogous to that for tensors of ranks two and four. Transverse-traceless tensors of

rank four have three independent coefficients, while those of rank two have only one. The

coefficient can be evaluated by the same method as described above.

C Contribution of ghosts and gauge-fixing terms

To evaluate the gauge field contribution to 3-point functions we must gauge-fix and intro-

duce ghost fields. This procedure generates a new contribution to the stress tensor that

depends on the gauge-fixing part of the Lagrangian. Here we show that this part does not

contribute to the 3-point functions. The general argument is based on the fact that the

full Lagrangian for the gauge field is

SYM =
1

g2YM

∫
d3x tr

[1
4
F IijF

I
ij + δBO

]
, (C.1)
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where O is a gauge-fixing part containing ghosts and δB is an infinitesimal BRST trans-

formation. The full stress tensor is therefore

TYM
ij = TAij + T gf

ij , (C.2)

where T gf
ij is a BRST-exact operator. Since physical states correspond to the cohomology

of the BRST transformation, T gf
ij vanishes when acting on such states. Therefore, inside

any vacuum correlation function, TYM
ij can be replaced by TAij .

As this is a formal argument, we will also present now an explicit perturbative proof

that the gauge-fixing part does not contribute to any correlation functions. We work in

the Rξ gauge and to first order in g2YM. The ghost part and gauge-fixing part of the action

may be written as

Sξ = − 1

g2YM

∫
d3x tr

[
ξ

2
(BI)2 +AIi ∂iB

I

]
, Sgh =

1

g2YM

∫
d3x tr

[
∂ic̄

I∂ic
I
]
. (C.3)

where c̄I and cI are the antighost and the ghost fields, and BI is the BRST auxiliary field.

All fields are in the adjoint representation and are regarded as traceless hermitian matrices.

The full Yang-Mills theory is given by the action

SYM =
1

g2YM

∫
d3x tr

[
1

4
F IijF

I
ij

]
+ Sξ + Sgh. (C.4)

This leads to the following propagators

〈〈BI(q̄)BJ(−q̄)〉〉 = 0, 〈〈BI(q̄)F Jij(−q̄)〉〉 = 0, (C.5)

and

− 〈〈AIai (q̄)BJb(−q̄)〉〉 = 〈〈(∂ic̄Ia)(q̄) cJb(−q̄)〉〉 = δabδIJ
ig2YMq̄i
q̄2

. (C.6)

Here, by (∂ic̄
Ia)(q̄), we denote the Fourier transform of ∂ic̄

Ia(x).

The stress tensor and the Υ tensor defined in (2.2) corresponding to each component

of the action is given by

TAij =
1

g2YM

tr

[
F IikF

I
jk − δij

1

4
F IklF

I
kl

]
,

T ξij =
1

g2YM

tr

[
−PijklAIk∂lBI + δij

ξ

2
(BI)2

]
,

T gh
ij =

1

g2YM

tr [Pijkl∂kc̄∂lc] ,

ΥA
ijkl = −1

2

[
δijT

A
kl + PijklT

A +QijklmnT
A
mn

]
δ(x− y),

Υξ
ijkl =

1

g2YM

tr

[
−δi(kδl)jAIm∂mBI + δijA

I
(k∂l)B

I − δi(kδl)j
ξ

2
(BI)2

]
δ(x− y),

Υgh
ijkl =

1

g2YM

tr
[
δi(kδl)j∂mc̄

I∂mc
I − δij∂(k c̄

I∂l)c
I
]
δ(x− y). (C.7)
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where Qijklmn is defined in (4.36). The full stress tensor and Υ tensor is a sum

TYM
ij = TAij + T ξij + T gh

ij , ΥYM
ijkl = ΥA

ijkl +Υξ
ijkl +Υgh

ijkl. (C.8)

The mechanism for cancellation of ghost and gauge-fixing terms is very general. Let

us consider a set of general gauge-invariant operators F (α) of arbitrary tensor structure,

indexed by α, quadratic in field strengths F I . Consider moreover gauge dependent terms

B(α) and ghost terms C(α) of the schematic form

B(α) =
1

g2YM

tr
[
AIi Ô

A,(α)
i [BI ] + ÔB,(α)[(BI)2]

]
, (C.9)

C(α) =
1

g2YM

tr
[
∂ic̄

IÔ
C,(α)
i [cI ]

]
, (C.10)

where Ô
A,(α)
i is linear in BI , ÔB,(α) is quadratic in BI and Ô

C,(α)
i is linear in cI , but are

otherwise operators of arbitrary tensor structure which may contain derivatives but no

other fields. We consider operators O(α) = F (α) + B(α) + C(α) and their n-point function

in the Yang-Mills theory with the action (C.4). The stress tensor and the Υ tensor are of

this form. We find

〈O(1)O(2) . . .O(n)〉 = 〈F (1)F (2) . . .F (n)〉+
+ 〈B(1)F (2) . . .F (n)〉+ 〈F (1)B(2) . . .F (n)〉+ . . .+ 〈F (1)F (2) . . .B(n)〉
+ 〈B(1)B(2)F (3) . . .F (n)〉+ perms

+ . . .

+ 〈B(1)B(2) . . .B(n)〉+ 〈C(1)C(2) . . . C(n)〉 (C.11)

since there is no interaction between ghosts and any other fields at leading order in g2YM.

We will now show that all terms but the first one cancel.

To begin, we observe that all terms containing at least one F and at least one B vanish.

Indeed, when Wick’s theorem is applied, there must be at least one contraction between

F and B fields, or between B and another B field, which gives zero by (C.5).

Now consider the term with B operators only. When expanded, it has 2n terms, but

every term containing (BI)2 must evaluate to zero as there must be at least one B-B

contraction. Therefore, only one term survives, namely

〈B(1) . . .B(n)〉 = 1

g2nYM

〈tr
(
AI1j1Ô

A,(1)
j1

[BI1 ]
)
· . . . · tr

(
AInjnÔ

A,(n)
jn

[BIn ]
)
〉. (C.12)

The only non-vanishing way of contracting fields is to contract auxiliary fields with gauge

fields. This gives precisely the same possible contractions as in the ghost part, which is

〈C(1) . . . C(n)〉 = 1

g2nYM

〈tr
(
∂j1 c̄

I1Ô
C,(1)
j1

[cI1 ]
)
· . . . · tr

(
∂jn c̄

InÔ
C,(n)
jn

[cIn ]
)
〉. (C.13)

It follows that if −ÔA,(α)i = Ô
C,(α)
i for all α, then (C.12) and (C.13) cancel each other out,

due to (C.6) and the anti-commuting nature of ghost fields.
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In our case, and to this order in g2YM, there are no gauge boson interactions and so the

gauge group G is effectively U(1)dimG. For 〈TYM
i1j1

TYM
i2j2

TYM
i3j3

〉 we therefore find

Fα = TAiαjα , Bα = T ξiαjα , Cα = T gh
iαjα

, (C.14)

and

− Ô
A,(α)
iαjα,k

= Ô
C,(α)
iαjα,k

= Piαjαkl∂l (C.15)

for α = 1, 2, 3. For 〈ΥYM
ijkl T

YM
mn 〉, we have

F (1) = ΥA
ijkl, B(1) = Υξ

ijkl, C(1) = Υgh
ijkl,

F (2) = TAmn, B(2) = T ξmn, C(2) = T gh
mn (C.16)

and

− Ô
A,(1)
ijkl,m = Ô

C,(1)
ijkl,m = δi(kδl)j∂m − δijδm(k∂l),

−ÔA,(2)mn,i = Ô
C,(2)
mn,i = Pmnik∂k. (C.17)

It follows that the contribution due to the gauge-fixing part of the action indeed cancels

out.

D Further Ward identities

D.1 Conformal Ward identities

The conformal Ward identities are given by

0 =

[
q̄2∆i−d−1
i

∂

∂q̄i

(
1

q̄2∆i−d−1
i

∂

∂q̄i

)
− (i↔ j)

]
〈〈O1(q̄1)O2(q̄2)O3(q̄3)〉〉, (i, j=1, 2, 3)

(D.1)

0 =


2(∆2 − d)∂2µ +

2∑

j=1

(
−2q̄νj ∂jν∂jµ + q̄jµ∂

2
j

)

 〈〈Ti1j1(q̄1)O2(q̄2)O3(q̄3)〉〉 (D.2)

+ 2
[
(δi1µ∂

a1
1 − δa1µ ∂1i1)δ

b1
j1

+ (a1 ↔ b1, i1 ↔ j1)
]
〈〈Ta1b1(q̄1)O2(q̄2)O3(q̄3)〉〉,

0 =




2∑

j=1

(
−2q̄νj ∂jν∂jµ + q̄jµ∂

2
j

)

 〈〈Ti1j1(q̄1)Ti2j2(q̄2)O(q̄3)〉〉 (D.3)

+ 2
[
(δi1µ∂

a1
1 − δa1µ ∂1i1)δ

b1
j1

+ (a1 ↔ b1, i1 ↔ j1)
]
〈〈Ta1b1(q̄1)Ti2j2(q̄2)O(q̄3)〉〉

+ 2
[
(δi2µ∂

a2
2 − δa2µ ∂2i2)δ

b2
j2

+ (a2 ↔ b2, i2 ↔ j2)
]
〈〈Ti1j1(q̄1)Ta2b2(q̄2)O(q̄3)〉〉,

0 =




2∑

j=1

(
−2q̄νj ∂jν∂jµ + q̄jµ∂

2
j

)

 〈〈Ti1j1(q̄1)Ti2j2(q̄2)Ti3j3(q̄3)〉〉 (D.4)

+ 2
[
(δi1µ∂

a1
1 − δa1µ ∂1i1)δ

b1
j1

+ (a1 ↔ b1, i1 ↔ j1)
]
〈〈Ta1b1(q̄1)Ti2j2(q̄2)Ti3j3(q̄3)〉〉

+ 2
[
(δi2µ∂

a2
2 − δa2µ ∂2i2)δ

b2
j2

+ (a2 ↔ b2, i2 ↔ j2)
]
〈〈Ti1j1(q̄1)Ta2b2(q̄2)Ti3j3(q̄3)〉〉,

where Oi is taken to have dimension ∆i and ∂jµ ≡ ∂/∂q̄µj .
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D.2 Diffeomorphism Ward identity

The diffeomorphism Ward identity for 3-point functions may be evaluated by functionally

differentiating ∇i〈Tij(x)〉s = 0 twice with respect to the metric [14], yielding

0 = q̄1i〈〈Tij(q̄1)Tkl(q̄2)Tmn(q̄3)〉〉 − 2q̄1i〈〈Υijmn(q̄1, q̄3)Tkl(q̄2)〉〉 − 2q̄1i〈〈Υijkl(q̄1, q̄2)Tmn(q̄3)〉〉
− 2q̄1(k〈〈Tl)j(q̄3)Tmn(−q̄3)〉〉 − 2q̄1(m〈〈Tn)j(q̄2)Tkl(−q̄2)〉〉 − δklq̄2p〈〈Tpj(q̄3)Tmn(−q̄3)〉〉
− δmnq̄3p〈〈Tpj(q̄2)Tkl(−q̄2)〉〉+ q̄2j〈〈Tkl(q̄3)Tmn(−q̄3)〉〉+ q̄3j〈〈Tmn(q̄2)Tkl(−q̄2)〉〉. (D.5)

We explicitly checked that all our 3-point functions satisfy this identity. Note that our result

differs from that quoted in [14] due to a difference in the definition of the 3-point function:

here, we define the 3-point function by the insertion of three copies of the operator Tij ,

whereas in [14], the 3-point function is defined via functionally differentiating the generating

functional three times. These two definitions differ from each other by semi-local terms

(see the discussion around (3.11)).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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