879 research outputs found

    Optimizing the colour and fabric of targets for the control of the tsetse fly Glossina fuscipes fuscipes

    Get PDF
    Background: Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour. Methodology/Principal Findings: On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue. Conclusions/Significance: Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region

    The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver

    Get PDF
    LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Odour-mediated orientation of beetles is influenced by age, sex and morph

    Get PDF
    The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies

    Reciprocity as a foundation of financial economics

    Get PDF
    This paper argues that the subsistence of the fundamental theorem of contemporary financial mathematics is the ethical concept ‘reciprocity’. The argument is based on identifying an equivalence between the contemporary, and ostensibly ‘value neutral’, Fundamental Theory of Asset Pricing with theories of mathematical probability that emerged in the seventeenth century in the context of the ethical assessment of commercial contracts in a framework of Aristotelian ethics. This observation, the main claim of the paper, is justified on the basis of results from the Ultimatum Game and is analysed within a framework of Pragmatic philosophy. The analysis leads to the explanatory hypothesis that markets are centres of communicative action with reciprocity as a rule of discourse. The purpose of the paper is to reorientate financial economics to emphasise the objectives of cooperation and social cohesion and to this end, we offer specific policy advice

    Epistasis in a Model of Molecular Signal Transduction

    Get PDF
    Biological functions typically involve complex interacting molecular networks, with numerous feedback and regulation loops. How the properties of the system are affected when one, or several of its parts are modified is a question of fundamental interest, with numerous implications for the way we study and understand biological processes and treat diseases. This question can be rephrased in terms of relating genotypes to phenotypes: to what extent does the effect of a genetic variation at one locus depend on genetic variation at all other loci? Systematic quantitative measurements of epistasis – the deviation from additivity in the effect of alleles at different loci – on a given quantitative trait remain a major challenge. Here, we take a complementary approach of studying theoretically the effect of varying multiple parameters in a validated model of molecular signal transduction. To connect with the genotype/phenotype mapping we interpret parameters of the model as different loci with discrete choices of these parameters as alleles, which allows us to systematically examine the dependence of the signaling output – a quantitative trait – on the set of possible allelic combinations. We show quite generally that quantitative traits behave approximately additively (weak epistasis) when alleles correspond to small changes of parameters; epistasis appears as a result of large differences between alleles. When epistasis is relatively strong, it is concentrated in a sparse subset of loci and in low order (e.g. pair-wise) interactions. We find that focusing on interaction between loci that exhibit strong additive effects is an efficient way of identifying most of the epistasis. Our model study defines a theoretical framework for interpretation of experimental data and provides statistical predictions for the structure of genetic interaction expected for moderately complex biological circuits

    LKB1 and AMPK and the cancer-metabolism link - ten years after

    Get PDF
    The identification of a complex containing the tumor suppressor LKB1 as the critical upstream kinase required for the activation of AMP-activated protein kinase (AMPK) by metabolic stress was reported in an article in Journal of Biology in 2003. This finding represented the first clear link between AMPK and cancer. Here we briefly discuss how this discovery came about, and describe some of the insights, especially into the role of AMPK in cancer, that have followed from it. In September 2003, our groups published a joint paper [1] in Journal of Biology (now BMC Biology) that identified the long-sought and elusive upstream kinase acting on AMP-activated protein kinase (AMPK) as a complex containing LKB1, a known tumor suppressor. Similar findings were reported at about the same time by David Carling and Marian Carlson [2] and by Reuben Shaw and Lew Cantley [3]; at the time of writing these three papers have received between them a total of over 2,000 citations. These findings provided a direct link between a protein kinase, AMPK, which at the time was mainly associated with regulation of metabolism, and another protein kinase, LKB1, which was known from genetic studies to be a tumor suppressor. While the idea that cancer is in part a metabolic disorder (first suggested by Warburg in the 1920s [4]) is well recognized today [5], this was not the case in 2003, and our paper perhaps contributed towards its renaissance. The aim of this short review is to recall how we made the original finding, and to discuss some of the directions that these findings have taken the field in the ensuing ten years

    Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Get PDF
    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases
    corecore