745 research outputs found

    A preliminary census of the macrofungi of Mt Wellington, Tasmania- the sequestrate species

    Get PDF
    This is the fourth and final contribution in a series of papers providing a preliminary documentation of the macrofungi of Mt Wellington, Tasmania. The earlier papers dealt with the gilled Basidiomycota, the non-gilled Basidiomycota and the Ascomycota, respectively, excluding the sequestrate species. The present paper completes the series by dealing with the sequestrate species, of which seven Ascomycota, 76 Basidiomycota, three Glomeromycota and one Zygomycota were found. Seven new genera and 25 new species to be formally described elsewhere, are recorded

    From Correlators to Wilson Loops in Chern-Simons Matter Theories

    Full text link
    We study n-point correlation functions for chiral primary operators in three dimensional supersymmetric Chern-Simons matter theories. Our analysis is carried on in N=2 superspace and covers N=2,3 supersymmetric CFT's, the N=6 ABJM and the N=8 BLG models. In the limit where the positions of adjacent operators become light-like, we find that the one-loop n-point correlator divided by its tree level expression coincides with a light-like n-polygon Wilson loop. Remarkably, the result can be simply expressed as a linear combination of five dimensional two-mass easy boxes. We manage to evaluate the integrals analytically and find a vanishing result, in agreement with previous findings for Wilson loops.Comment: 32 pages, 6 figures, JHEP

    4D, N = 1 Supersymmetry Genomics (II)

    Full text link
    We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of ncn_c-cis and ntn_t-trans representations. Analyzing the real scalar and complex linear superfield multiplets, these "chemical enantiomer" numbers are found to be ncn_c = ntn_t = 1 and ncn_c = 1, ntn_t = 2, respectively.Comment: 40 pages, 8 figures, sequel to "4D, N = 1 Supersymmetry Genomics (I)" [arxiv: 0902.3830

    On form factors in N=4 sym

    Full text link
    In this paper we study the form factors for the half-BPS operators OI(n)\mathcal{O}^{(n)}_I and the N=4\mathcal{N}=4 stress tensor supermultiplet current WABW^{AB} up to the second order of perturbation theory and for the Konishi operator K\mathcal{K} at first order of perturbation theory in N=4\mathcal{N}=4 SYM theory at weak coupling. For all the objects we observe the exponentiation of the IR divergences with two anomalous dimensions: the cusp anomalous dimension and the collinear anomalous dimension. For the IR finite parts we obtain a similar situation as for the gluon scattering amplitudes, namely, apart from the case of WABW^{AB} and K\mathcal{K} the finite part has some remainder function which we calculate up to the second order. It involves the generalized Goncharov polylogarithms of several variables. All the answers are expressed through the integrals related to the dual conformal invariant ones which might be a signal of integrable structure standing behind the form factors.Comment: 35 pages, 7 figures, LATEX2

    Locomotor adaptability in persons with unilateral transtibial amputation

    Get PDF
    Background Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb

    Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed.</p> <p>Methods</p> <p>Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals.</p> <p>Results</p> <p>TW did not modify kinematic gait variability as compared to OW (multivariate T<sup>2</sup>, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T<sup>2 </sup>p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94).</p> <p>Conclusions</p> <p>Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design.</p

    On duality symmetries of supergravity invariants

    Get PDF
    The role of duality symmetries in the construction of counterterms for maximal supergravity theories is discussed in a field-theoretic context from different points of view. These are: dimensional reduction, the question of whether appropriate superspace measures exist and information about non-linear invariants that can be gleaned from linearised ones. The former allows us to prove that F-term counterterms cannot be E7(7)-invariant in D=4, N=8 supergravity or E6(6)-invariant in D=5 maximal supergravity. This is confirmed by the two other methods which can also be applied to D=4 theories with fewer supersymmetries and allow us to prove that N=6 supergravity is finite at three and four loops and that N=5 supergravity is three-loop finite.Comment: Clarification of arguments and their consistency with higher dimensional divergences added, e.g. we prove the 5D 4L non-renormalisation theorem. The 4L N=6 divergence is also ruled out. References adde

    Fractal analyses reveal independent complexity and predictability of gait

    Get PDF
    Locomotion is a natural task that has been assessed for decades and used as a proxy to highlight impairments of various origins. So far, most studies adopted classical linear analyses of spatio-temporal gait parameters. Here, we use more advanced, yet not less practical, non-linear techniques to analyse gait time series of healthy subjects. We aimed at finding more sensitive indexes related to spatio-temporal gait parameters than those previously used, with the hope to better identify abnormal locomotion. We analysed large-scale stride interval time series and mean step width in 34 participants while altering walking direction (forward vs. backward walking) and with or without galvanic vestibular stimulation. The Hurst exponent α and the Minkowski fractal dimension D were computed and interpreted as indexes expressing predictability and complexity of stride interval time series, respectively. These holistic indexes can easily be interpreted in the framework of optimal movement complexity. We show that α and D accurately capture stride interval changes in function of the experimental condition. Walking forward exhibited maximal complexity (D) and hence, adaptability. In contrast, walking backward and/or stimulation of the vestibular system decreased D. Furthermore, walking backward increased predictability (α) through a more stereotyped pattern of the stride interval and galvanic vestibular stimulation reduced predictability. The present study demonstrates the complementary power of the Hurst exponent and the fractal dimension to improve walking classification. Our developments may have immediate applications in rehabilitation, diagnosis, and classification procedures

    Heterotic Black Horizons

    Full text link
    We show that the supersymmetric near horizon geometry of heterotic black holes is either an AdS_3 fibration over a 7-dimensional manifold which admits a G_2 structure compatible with a connection with skew-symmetric torsion, or it is a product R^{1,1} * S^8, where S^8 is a holonomy Spin(7) manifold, preserving 2 and 1 supersymmetries respectively. Moreover, we demonstrate that the AdS_3 class of heterotic horizons can preserve 4, 6 and 8 supersymmetries provided that the geometry of the base space is further restricted. Similarly R^{1,1} * S^8 horizons with extended supersymmetry are products of R^{1,1} with special holonomy manifolds. We have also found that the heterotic horizons with 8 supersymmetries are locally isometric to AdS_3 * S^3 * T^4, AdS_3 * S^3 * K_3 or R^{1,1} * T^4 * K_3, where the radii of AdS_3 and S^3 are equal and the dilaton is constant.Comment: 35 pages, latex. Minor alterations to equation (3.11) and section 4.1, the conclusions are not affecte

    Water dispersible microbicidal cellulose acetate phthalate film

    Get PDF
    BACKGROUND: Cellulose acetate phthalate (CAP) has been used for several decades in the pharmaceutical industry for enteric film coating of oral tablets and capsules. Micronized CAP, available commercially as "Aquateric" and containing additional ingredients required for micronization, used for tablet coating from water dispersions, was shown to adsorb and inactivate the human immunodeficiency virus (HIV-1), herpesviruses (HSV) and other sexually transmitted disease (STD) pathogens. Earlier studies indicate that a gel formulation of micronized CAP has a potential as a topical microbicide for prevention of STDs including the acquired immunodeficiency syndrome (AIDS). The objective of endeavors described here was to develop a water dispersible CAP film amenable to inexpensive industrial mass production. METHODS: CAP and hydroxypropyl cellulose (HPC) were dissolved in different organic solvent mixtures, poured into dishes, and the solvents evaporated. Graded quantities of a resulting selected film were mixed for 5 min at 37°C with HIV-1, HSV and other STD pathogens, respectively. Residual infectivity of the treated viruses and bacteria was determined. RESULTS: The prerequisites for producing CAP films which are soft, flexible and dispersible in water, resulting in smooth gels, are combining CAP with HPC (other cellulose derivatives are unsuitable), and casting from organic solvent mixtures containing ≈50 to ≈65% ethanol (EtOH). The films are ≈100 ” thick and have a textured surface with alternating protrusions and depressions revealed by scanning electron microscopy. The films, before complete conversion into a gel, rapidly inactivated HIV-1 and HSV and reduced the infectivity of non-viral STD pathogens >1,000-fold. CONCLUSIONS: Soft pliable CAP-HPC composite films can be generated by casting from organic solvent mixtures containing EtOH. The films rapidly reduce the infectivity of several STD pathogens, including HIV-1. They are converted into gels and thus do not have to be removed following application and use. In addition to their potential as topical microbicides, the films have promise for mucosal delivery of pharmaceuticals other than CAP
    • 

    corecore