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1 Introduction

It has now been established that D = 4, N = 8 supergravity is finite at three loops [1],

despite the existence of a linearised R4 counterterm [2, 3] generalising the (Bel-Robinson)2

type counterterm of the N = 1 theory [4]. It is also now known that maximal supergravity

is finite at four loops in D = 5 [5]. The only other candidate linearised short counterterms

(i.e. F or BPS terms) in D = 4 occur at the five and six loop orders and are four-point terms

of the form ∂2kR4 for k = 2, 3 [6–8]. The absence of the R4 divergence can be seen from

field-theoretic arguments [9, 10], including algebraic renormalisation theory, results that

generalise those for the finiteness of one-half BPS counterterms in maximal super Yang-

Mills theories in various dimensions [10]. However, even in the Yang-Mills case it does not

seem easy to extend these results to the double-trace ∂2F 4 invariant [11, 12] which is known

to be finite at three loops in D = 6 [13]. String theory provides an alternative approach to

discussing field-theoretic finiteness issues and has been used to give arguments in favour of

the known Yang-Mills results and also suggesting that D = 4, N = 8 supergravity should

be finite at least up to six loops [15]. In [16] a similar conclusion was reached using a

first-quantised approach to supergravity based on pure spinors.

A key feature of supergravity theories which has no analogue in SYM is the existence

of duality symmetries. It has recently been shown [17] that E7(7) can be maintained in

perturbation theory in D = 4 (at the cost of manifest Lorentz invariance), and this suggests

that these duality symmetries should be taken seriously in providing additional constraints

on possible counterterms which might not be visible from a linearised analysis. For R4, a

scattering amplitude analysis supporting the idea that the full invariant is not compatible

with E7(7) was given in [18], while in a recent paper this violation of E7(7) invariance was

demonstrated by means of an argument based on dimensional reduction from type II string

theory [19].
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In this article, we investigate this issue for D = 4, N = 8 supergravity in a field-theory

setting from three different points of view: dimensional reduction of higher-dimensional

counterterms, the (non)-existence of appropriate superspace measures to generalise the

linearised ones, and use of the so-called ectoplasm formalism which allows one to write

super-invariants in terms of closed superforms. This analysis implies in particular that the

requirement of E7(7) invariance postpones the onset of UV divergences in the D = 4, N = 8

theory until at least seven loops. Similar analysis of the D = 4, N = 5 and N = 6 theories

shows that they will be finite through three and four loops respectively.

2 Dimensional reduction

One way of stating the problem with duality invariance is to start from the R4 counterterm

in D = 11 and to reduce it to D = 4. This reduced invariant will only have the natural

SO(7) symmetry of a standard Kaluza-Klein reduction on T 7. However, the invariant

may be promoted to a full SU(8) invariant by first performing the necessary dualisations

of higher-form fields and then averaging, i.e. parametrising the embedding of SO(7) into

SU(8) and integrating over the SU(8)/SO(7) coset in a fashion similar to that employed

in harmonic superspace constructions. If the Kaluza-Klein reduction ansatz (using the

notation of ref. [20]) for the metric in a T 11−D reduction from 11 to D dimensions takes

the form ds 2
11 = e

1
3
~g·~φds 2

D + . . . , the T 11−D compactification volume is proportional to

e−
(D−2)

6
~g·~φ. For the Einstein action, the T 11−D volume factor e−

(D−2)
6

~g·~φ cancels against a

factor e
1
6
D~g·~φe−2 1

3
~g·~φ arising out of

√−gDg
µν
D . However, for the R4 invariant in D = 11, the

Einstein-frame reduction produces an extra factor of e−~g·~φ arising with the three additional

inverse metrics present in the R4 term as compared to the Einstein-Hilbert action. This

dilatonic factor will then be promoted to an SU(8) invariant by the SU(8)/SO(7) integra-

tion. If we expand the exponentials in power series, terms linear in the scalars vanish in

such an averaging, but SU(8) invariant quadratic terms survive.

Let us illustrate this in the simpler case of the dimensional reduction of the 11-

dimensional R4 invariant down to 8 dimensions, where the duality group is SL(3,R) ×
SL(2,R) while the linearly realised subgroup is SO(3)×SO(2). The dimensionally reduced

invariant is manifestly SL(3,R) invariant by construction, but the resulting gravitational

R4 term in D = 8 is multiplied by the SO(2) non-invariant prefactor e−v (we define the

volume modulus v ≡ 1
||g||~g · ~φ for convenience), while the Pontryagin term 1

4p
2
1 − p2 is mul-

tiplied by the SO(2) non-invariant axion field a descending from the 3-form in D = 11.

Integrating the SO(2) transformed complex function τ ≡ a+ ie−v over SO(2), one obtains

∫ π
2

−π
2

dθ

π

τ − tan θ

1 + τ tan θ
=

∫ +∞

−∞

dt

π

τ

1 − t2τ2
= i . (2.1)

One therefore concludes that the SO(2) invariant R4 terms do not in fact depend

on the scalar fields; in particular, the prefactor of the parity-even R4 term averages to a

constant and the coefficient of the Pontryagin term averages to zero. This is as expected

because this invariant is associated to the known 1-loop logarithmic divergence of maximal

supergravity in eight dimensions, and it must therefore preserve SL(2,R) invariance.
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However, we are going to see that the eight-dimensional case is rather special, and

that one generally obtains a non-trivial function of the scalar fields after reducing to lower

dimensions and R-symmetry averaging. The first non-trivial example appears in seven

dimensions. The scalar fields are the volume modulus v and the SL(4,R) symmetric matrix

GIJ which together constitute the moduli of T 4, plus four axion fields aI descending from

the 11-dimensional 3-form. The R4 term resulting from the eleven dimensional invariant

after dimensional reduction is multiplied by e−||g||v = e−4ζ , where we have defined ζ ≡
1
4~g · ~φ = 1

4 ||g||v. One computes the SO(5) averaging integral (in terms of stereographic

coordinates tI for S4 ∼= SO(5)/SO(4))

3

4π2

∫
d4t

(1 + t2)
5
2

(1 + t2) e−4ζ

(
1 + tIaI

)2
+ e−5ζGIJ tItJ

= 1 − 6

7
ζ2 − 3

35
aIaI + . . .

= 1 − 6

35
φABφ

AB + O(φ4) , (2.2)

where φAB parametrise SL(5,R)/SO(5) in the symmetric gauge.1 This function clearly

depends on the scalar fields, and is thus not invariant with respect to SL(5,R).

In lower dimensions, similar explicit evaluations of the scalar prefactors are possible in

principle, but burdensome in practice. Thus, we will adopt a different approach, which at

the same time clarifies the relation to the string-theory based discussions of refs. [15, 19].

To set the stage, we return first to D = 10 and consider the scalar prefactor appearing there

for the R4 type invariant. InD = 10, one finds g = 1
2 , corresponding to a D = 11 → D = 10

reduction with an S1 circumference proportional to e−
2
3
φ, where φ is the type IIA dilaton.

The dimensional reduction of the D = 11 R4 invariant generates a D = 10 scalar prefactor

e−
1
2
φ, so one sees immediately that this D = 10 supersymmetry invariant cannot also be

invariant under the continuous GL(1) “duality” symmetry of the type IIA theory. Since

the D = 10 R4 invariant is not called for as a counterterm by näıve power counting, this

does not have a direct bearing on type IIA supergravity infinities. However, what interests

us here is the pattern of GL(1) non-invariance. In the D = 10 case, one may capture a

relevant feature of the e−
1
2
φ scalar prefactor by noting that on the type IIA GL(1)/{1l}

scalar target manifold, it satisfies the Laplace equation

(
∂2

∂φ2
− 1

4

)
e−

1
2
φ = 0 . (2.3)

It is clear from the nonzero Laplace eigenvalue in this equation that a GL(1) invariant

function f(φ) = 1 cannot be a solution to this equation, so the continuous GL(1) duality

symmetry is necessarily broken by this D = 10 counterterm.

1More specifically

exp[2φAB ] =

 

e4ζ e4ζaJ

e4ζaI e−ζGIJ + e4ζaIaJ

!

.
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In D = 9, maximal supergravity has a three-dimensional space of scalars taking their

values in a GL(2,R)/SO(2) target space, with a scalar sector Lagrangian

Lscalar =
√−g

(
−1

2
∂µφ1∂

µφ1 −
1

2
∂µφ2∂

µφ2 −
1

2
e−

3
2
φ1+

√
7

2
φ2∂µχ∂

µχ

)
(2.4)

which may be rewritten as

Lscalar =
√−g

(
−1

2
∂µv2∂

µv2 −
1

2
∂µϕ∂

µϕ− 1

2
e2ϕ∂µχ∂

µχ

)
, (2.5)

where the T 2 volume modulus is v2 = 1
||g||~g · ~φ =

√
7

4 φ1 + 3
4φ2 (in terms of which the

T 2 reduction volume is proportional to e−
7
6
~g·~φ = e−

√
7

3
v2) and the orthogonal dilatonic

combination is ϕ = −3
4φ1+

√
7

4 φ2, while χ is theD = 9 axionic scalar emerging from theD =

10 Kaluza-Klein vector. The GL(2,R) invariant Laplace operator on the GL(2,R)/SO(2)

scalar target space thus becomes

∆9 =
∂2

∂v2
2

+

(
∂2

∂ϕ2
+

∂

∂ϕ
+ e−2ϕ ∂2

∂χ2

)
. (2.6)

The bracketed terms in (2.6) may be recognised as the Laplace operator on SL(2,R)/SO(2).

The scalar prefactor of the R4 term descending from D = 11 in this case is e
−3(φ1+ 3√

7
φ2)

=

e
− 2√

7
v2 = e−||g||v2. This scalar prefactor does not depend on the (ϕ,χ) fields of the

SL(2,R)/SO(2) sector, however, so the SL(2,R)/SO(2) Laplace operator does not con-

tribute when acting upon this function. The Laplace equation satisfied by the R4 scalar

prefactor in D = 9 is thus

(∆9 − ||g||29)e−||g||9v2 = 0 , ||g||9 =
2√
7
. (2.7)

Comparing to the D = 10 case with ||g||10 = 1
2 and v1 = φ, we see that the Laplace

equation satisfied by the f(v) prefactor has the same form in the D = 10 and D = 9

cases. The D = 9 equation (2.7) is invariant under the H9 = SO(2) R-symmetry of D = 9

supergravity . The H9 = SO(2) R-symmetry also leaves the v2 volume modulus invariant

in this case. It is clear, however, from the ||g||2 “mass term” in (2.7) that a GL(2,R)

invariant (i.e. constant) function f(v2) = 1 cannot be a solution of this equation, so the

continuous D = 9 GL(2,R) duality symmetry is necessarily broken by the R4 counterterm

in D = 9.

When one descends one step further to D = 8, a rather special case arises. Once again,

the scalar prefactor for the R4 term derived directly from a T 3 D = 11 → D = 8 reduction

depends only on the volume modulus v3 = 1
||g||~g · ~φ = 1

2φ1 + 3
2
√

7
φ2 +

√
3
7φ3. The target

manifold for seven scalar fields inD = 8 has structure (SL(3,R)×SL(2,R))/(SO(3)×SO(2)).

As in D = 10 & 9, the v3 volume modulus is clearly invariant under the “gravity line”

SO(3) little group. However, the total set of seven D = 8 scalars is now completed for

the first time by an extra axionic scalar a = A11 10 9 emerging from the D = 11 3-form

gauge field. This axionic scalar together with the T 3 volume modulus v3 parametrise the

– 4 –
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SL(2,R)/SO(2) portion of the scalar-field target space. Defining the orthogonal dilatonic

combinations ϕ1 = −3
4φ1 +

√
7

4 φ2 and ϕ2 = −
√

3
2 φ1 − 3

√
3

4
√

7
φ2 + 2√

7
φ3 and letting χ1, χ2 and

χ3 be the axions emerging from Kaluza-Klein vectors, one finds the SL(3,R) × SL(2,R)

invariant D = 8 Laplace operator

∆8 =

(
∂2

∂v2
3

+
∂

∂v3
+ e−2v3

∂2

∂a2

)

+

(
∂2

∂ϕ2
1

+
∂

∂ϕ1
+

∂2

∂ϕ2
2

+
√

3
∂

∂ϕ2
+ e−2ϕ1

∂2

∂χ2
1

+ e−ϕ1−
√

3ϕ2
∂2

∂χ2
2

+ eϕ1−
√

3ϕ2
∂2

∂χ2
3

)
.

(2.8)

The first line in eq. (2.8) comprises the Laplace operator on SL(2,R)/SO(2) while the

second line comprises the Laplace operator on SL(3,R)/SO(3).

Dimensionally reducing the R4 term from D = 11 to D = 8 produces an R4 term with

a scalar prefactor e−||g||v3 just as in D = 10 & D = 9. However, the SL(2,R)/SO(2) part

of the Laplace operator involving the single field v3 on which this prefactor depends is now
∂2

∂v2
3

+ ∂
∂v3

owing to the nonlinear dependence of the SL(2,R)/SO(2) target space metric on

the volume modulus v3. Moreover, in D = 8 one has ||g||8 = 1. Consequently, the D = 8

Laplace equation satisfied by the scalar prefactor f(v3) is

∆8 e
−||g||8v3 = 0 , ||g||8 = 1 (2.9)

with a vanishing “mass term”.

As we have already seen, although the D = 8 prefactor f(v3) = e−v3 obtained directly

by dimensional reduction from D = 11 is properly SO(3) invariant, it fails to be SO(2)

invariant since SO(2) mixes v3 and a. However any SO(2) transform of the D = 8 R4

type invariant would equally well satisfy the requirements of local supersymmetry and

gauge invariance, and moveover, since the Laplace equation (2.9) is fully invariant under

SO(3) × SO(2), such an SO(2) transform would satisfy eq. (2.9) as well. Consequently,

averaging over such SO(2) transforms in order to produce a fully SO(3) × SO(2) invariant

candidate counterterm must also give a result satisfying the Laplace equation (2.9). As we

have seen in eq. (2.1), this averaging in fact produces f(v3, a) = constant, which is allowed

by (2.9). Thus the pure R4 structure of the averaged D = 8 candidate counterterm is fully

SL(3,R)× SL(2,R) invariant. This is as it should be, since there is a known R4 divergence

at one loop in D = 8 maximal supergravity.

Now let us continue down to N = 8 supergravity in four dimensions, where the target

space for the 70 scalars is E7(7)/SU(8). The action of SU(8) on the T 7 volume modulus

field v = ~g · ~φ is highly nonlinear, so we will not present an explicit SU(8) averaging of the

dimensionally reduced R4 invariant for the D = 4 case. Instead, we shall now concentrate

on the E7(7) invariant Laplace equation which must be satisfied, corresponding to (2.6)

and (2.8) for the D = 9 and D = 8 cases. The scalar prefactor of the R4 term obtained

via dimensional reduction from D = 11 on T 7 is e−||g||4v, with ||g||4 =
√

7.

After dualisation, the 70 scalar fields parametrise E7(7)/SU(8)c in a gauge associated

to the parabolic subalgebra
(
gl1 ⊕ sl7

)(0) ⊕ 35(3) ⊕ 7
(6) ⊂ e7(7) , (2.10)
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together with any convenient choice of gauge for the SL(7,R)/SO(7) scalars.

By construction, the Laplace equation on the scalar target manifold is invariant with

respect to the non-linear action of SU(8), and it follows that the SU(8) invariant scalar-

field prefactor2 f3 occurring in the D = 4 invariant satisfies the same Laplace equation as

e−
√

7v:

∆f3(φ) = ∆

∫

SU(8)/ SO(7)

du e−
√

7v(u) =

∫

SU(8)/ SO(7)

du
(
∆ e−

√
7v(u)

)
(u) . (2.11)

For the dimensionally reduced R4 invariant, one finds that the scalar-field prefactor f3

satisfies the Laplace equation

∆ e−
√

7v =

(
∂2

∂v2
+ 7

√
7
∂

∂v

)
e−

√
7v = −42 e−

√
7v , (2.12)

and so (
∆ + 42

)
f3(v) = 0 , (2.13)

in agreement with the computation of [19]. It is clear that f3(v) = 1 is not a solution of

the Laplace equation (2.13), and so we conclude that the unique R4 invariant is not E7(7)

invariant in four dimensions.

Considering the seven independent SU(8) invariant functions of the 70 linearly-trans-

forming scalar fields φijkl, one can easily convince oneself that the only SU(8) invariant

solution to the Laplace equation ∆f0(φ) = 0 is f0(φ) = 1. It follows that the Laplace

equation (∆+42)f3(φ) = 0 determines uniquely f3(φ) as a formal power series in φijkl (note

that we are only interested here in the Taylor expansion of f3(φ) in perturbation theory).

Dilaton factors of this sort in front of purely gravitational terms constructed from

curvatures and their covariant derivatives prevent such terms from being constituent parts

of duality invariants, since the lowest-order part of a duality transformation involves con-

stant shifts of the scalar fields. Of course, if there were additional invariants arising in a

given spacetime dimension, without Kaluza-Klein origins, combinations of such invariants

might be capable of erasing the problematic dilatonic scalar prefactors, thereby permit-

ting a duality-invariant construction. However, in D = 4, the only available 1/2 BPS

SU(8) invariant R4 counterterm [3] is unique at the 4-point level [6]. This counterterm

develops a higher-point structure which is not fully known, but this higher-point structure

must also be unique. Were there alternative higher-point structures extending this 4-point

linearised supersymmetry invariant, their differences would themselves have to constitute

new D = 4 invariants under SU(8)-covariant linearised supersymmetry, and these do not

exist [6]. Thus, the uniqueness of the SU(8)-symmetric R4 invariant in D = 4 maximal

supergravity shows that the SU(8)-symmetrised dimensional reduction of the R4 invariant

in D = 11 is the only such supersymmetric candidate. Its ineligibility as an E7(7) duality

invariant thus rules out the R4 candidate counterterm in D = 4.

The above argument is a variant of the one given in ref. [19] (where it was framed in

terms of reduction from D = 10 type II superstring/supergravity amplitudes). It also gives

2The subscript on the D = 4 scalar prefactor indicates the loop order at which the invariant would be

expected to occur under näıve power counting.
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a way to see that the maximal supergravity 1/4 BPS ∂4R4 candidate counterterm at 5 loops

and the 1/8 BPS ∂6R4 candidate counterterm at 6 loops cannot be E7(7) duality invariants

either. Once again, the argument hangs upon the uniqueness of the corresponding D =

4 SU(8) symmetric BPS invariants, together with the Laplace equation for the dilaton

factors arising from dimensional reduction in front of the purely gravitational parts of

the invariants.

In fact, it is precisely the known existence of the 1/2 BPS R4 one-loop divergence of

maximal supergravity in D = 8, the 1/4 BPS ∂4R4 two-loop divergence in D = 7 and the

1/8 BPS ∂6R4 three-loop divergence in D = 6 that permits us to rule out the descendants of

these counterterms as E7(7) invariants in D = 4. The existence of these higher-dimensional

divergences indicates the presence of corresponding counterterms without dilaton factors

in the purely gravitational parts of the higher-dimensional versions of these counterterms.

Indeed, the demonstration that E7(7) symmetry is preserved in perturbative theory for

N = 8 supergravity [17], generalises straightforwardly to higher dimensions, provided that

there are no Lorentz × R-symmetry one-loop anomalies. The absence of such an anomaly is

trivial in odd dimensions, and there is none in six dimensions [22]. The SL(2,R) symmetry

is, admittedly, anomalous at the one-loop order in D = 8, but the latter does not affect the

consequences of the tree-level Ward identities for the one-loop divergence, and this must

therefore be associated to an SL(2,R) duality-invariant R4 counterterm, as we have seen

above. Coupled with theD = 4 uniqueness of the R4, ∂4R4 and ∂6R4 BPS counterterms [6],

the inevitable appearance of dilaton factors in the D = 4 versions of these counterterms

then rules out E7(7) invariance for all these BPS candidate operators.

To see how this works more generally, define the Kaluza-Klein Ansatz for reduction

from a higher dimension D = 11, 8, 7, 6, 5 down to D = 4:

ds 2
D = e(D−4)φDds 2

4 + e−2φDGIJ(dyI +AI)(dyJ +AJ) . (2.14)

Since we will be treating a number of spacetime dimensions at once, it is convenient

at this stage to adopt a normalisation for the scalar fields different from the canonical

normalisation we have used so far. This will not, however, affect the key values of the

Laplace “masss terms” that we seek to derive. Each axion field, labelled la, originating

from the dimensional reduction of a form field in D dimensions, admits a kinetic term with

a factor e2wD(la)φD , and each vector field, labelled by lv, admits a kinetic term with a factor

e2wD(lv)φD as for example, starting from D = 11, with φ11 = v
3||g|| = v

3
√

7
in terms of our

earlier R4 discussion,

e6φ11GILGJMGKNdaIJK ∧ ⋆daLMN + e12φ11GIJda
I ∧ ⋆daJ

+ e−3φ11GIKGJLFIJ ∧ ⋆FKL + e−9φ11GIJF
I ∧ ⋆F J . (2.15)

One then computes how the SU(8) invariant Laplace operator acts on the function

e−(D−4)nφD multiplying the purely gravitational ∂2(n−3)R4 terms after dimensional reduc-

– 7 –
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tion from D to 4 dimensions:

∆ e−(D−4)n φD =
3∑

lv
wD(lv)2


 ∂2

∂φD
2

+

(∑

la

wD(la)

)
∂

∂φD


 e−(D−4)n φD

=
D − 4

D − 2
n(D + n− 32) e−(D−4)n φD . (2.16)

If it is assumed that there is a duality-invariant ∂2(n−3)R4 type counterterm in D

dimensions, then the corresponding scalar field function fn(φ) multiplying ∂2(n−3)R4 in

four dimensions has to satisfy

(
∆ +

D − 4

D − 2
n(32 −D − n)

)
fn(φ) = 0 . (2.17)

We have already seen in eq. (2.13) how the existence of an SL(3,R)×SL(2,R) duality-

invariant one-loop divergence in D = 8 maximal supergravity implies f3(φ) 6= 1 for the

unique SU(8)-invariant R4 type counterterm in D = 4, showing that this potential 3-loop

1/2 BPS counterterm cannot be E7(7) invariant. Similarly, the known 2-loop divergence

of maximal supergravity in D = 7, which has SL(5,R) duality invariance, implies that the

function f5(φ) multiplying ∂4R4 in D = 4 invariant must satisfy

(∆ + 60)f5(φ) = 0 . (2.18)

This then implies that the unique 1/4 BPS SU(8)-invariant ∂4R4 type counterterm in

D = 4 cannot be duality-invariant. And similarly, from the existence of a 3-loop divergence

in D = 6 maximal supergravity with SO(5, 5) duality invariance, one learns that the

function f6(φ) multiplying ∂6R4 in the corresponding D = 4 counterterm must satisfy

(∆ + 60)f6(φ) = 0 , (2.19)

ruling out the possibility of E7(7) invariance for the unique 1/8 BPS SU(8)-invariant ∂6R4

type counterterm as well.

From the uniqueness of these three BPS SU(8)-invariant D = 4 operators, we also

get constraints on the existence of duality-invariant counterterms in dimensions D > 4.

The unique forms of the functions fn(φ) in eq. (2.17) for each of the cases n = 3, 5, 6

imply in turn

D − 4

D − 2
3(29 −D) = 42 ⇒ (D − 8)(D − 11) = 0 (2.20)

D − 4

D − 2
5(27 −D) = 60 ⇒ (D − 7)(D − 12) = 0 (2.21)

D − 4

D − 2
6(26 −D) = 60 ⇒ (D − 6)(D − 14) = 0 . (2.22)

From the n = 3 case, we learn that duality-invariant R4 type operators are possible in

D = 11 and D = 8, as we have already seen in eq. (2.1), but we also learn that duality-

invariant R4 type operators cannot exist in other dimensions.
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From the n = 5 and n = 6 cases, we learn that duality-invariant ∂4R4 and ∂6R4

type counterterms can exist only in the already-known dimensions D = 7 and D = 6,

respectively. In particular, this rules out the existence of an E6(6) invariant counterterm

for a putative 4-loop divergence in five dimensions. This explains the absence of the D = 5,

L = 4 divergence computed explicitly in [5]. This also shows that there are no invariants of

types ∂4R4 or ∂6R4 in eleven dimensions, although the higher-order supersymmetrisation

of the R4 invariant could involve a ∂6R4 term.

For completeness, let us discuss briefly the case of type II supergravity in ten dimen-

sions. We define φ10 as in (2.14), and let φ be the ten-dimensional dilaton (this discussion

is valid for both type IIA and type IIB). The existence of an invariant at order α′ n and ℓ

loops in string theory with respect to the classical supersymmetry transformations would

imply the following Laplace equation for the corresponding n-loop four dimensional fn(φ):

∆ e−6nφ10+(2ℓ−n
2 )φ =

(
1

48

∂2

∂φ10
2

+
11

4

∂

∂φ10

+
∂2

∂φ2
+

∂

∂φ

)
e−6nφ10+(2ℓ−n

2 )φ

=

(
n(n− 17) + 4ℓ

(
ℓ− n− 1

2

))
e−6nφ10+(2ℓ−n

2 )φ . (2.23)

Consistently with the contributions to the string-theory effective action; the only possible

invariants at order α′ 3 appear at the tree level and one loop, the only possible invariants

at order α′ 5 appear at the tree level and two loops; and the only possible invariant at

order α′ 6 appears at three loops. This is not in contradiction with the 0, 1 and 2-loop

contributions to the effective action at order α′ 6, because they define the order α′ 6 parts

of the ℓ = 0 and ℓ = 1 α′ 3 invariants.

Although our purely field-theoretic discussion is completely different in nature from

the one given in terms of the non-perturbative string theory effective action in [15], there

are some similarities that are worth pointing out. The Laplace equation (2.17) that we

have shown to be required for the scalar prefactor functions multiplying the ∂2(n−3)R4

terms in D = 4 BPS candidate counterterms has been derived in [23] by an analysis of the

expected properties of U-duality-invariant functions En(φ) multiplying the ∂2(n−3)R4 term

in the non-perturbative string theory effective action. This is rather natural, because it

was conjectured in [23] that this equation is implied by supersymmetry. Note, nevertheless,

that the equations obtained in [15] differ from ours in that we do not have Dirac delta-

function source terms, which only appear when considering non-analytic components of

the non-perturbative functions En(φ). We also do not consider the source for the 6-loop

equation quadratic in the 3-loop function, since we are just interested in supersymmetry

invariants with respect to the tree-level supersymmetry transformations when searching

for candidate counterterms for a first logarithmic divergence. Relying on the uniqueness of

the BPS invariants in four dimensions, we have been able to demonstrate that the possible

supergravity logarithmic divergences can occur only when the Laplace equation satisfied

by the threshold function multiplying the ∂2(n−3)R4 term is ∆D fn(φ) = 0, in which case

fn(φ) = 1 is a solution and a duality-invariant counterterm can exist. This occurs precisely

when the Laplace equation satisfied by the non-perturbative function En(φ) admits a Dirac

delta-function source [15]. It is precisely these Dirac delta-function sources which imply
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that En(φ) involves a logarithm of the effective dilaton, which would be associated to a

logarithm of the Mandelstam invariant in the supergravity limit, and thus to a logarithmic

divergence in field theory.

To summarise, the results of this analysis for the maximal D = 4 supergravity theory

are that the 1/2, 1/4 and 1/8 BPS candidate counterterms are ruled out by the requirement

of continuous E7(7) duality invariance. Consequently, the first viable D = 4 candidate

counterterm with E7(7) invariance will be the non-BPS ∂8R4 operator anticipated at seven

loops [24]. In superspace language, this first E7(7) invariant candidate is simply the volume

of superspace,
∫
d4xd32θ detE. It remains to be verified whether this invariant is non-

vanishing subject to the classical field equations of the N = 8 theory.

In addition, we have shown that the absence of an E6(6) invariant ∂6R4 counterterm in

D = 5 explains the 4-loop finiteness of the maximal supergravity theory in five dimensions.

3 Harmonic measures

Another aspect of the difficulty in constructing non-linear invariants in maximal supergrav-

ity is that the necessary measures that generalise the linearised ones do not always exist.

Here we discuss this issue in the case of D = 4, N = 8 supergravity. At the linearised level,

there are three short invariants which can be written as integrals over certain harmonic

superspaces [6]. We briefly review these and then discuss how one might try to generalise

these integrals to the non-linear case.

We recall that harmonic superspace is the product of ordinary superspace with a coset

of the R-symmetry group G which is always chosen to be a compact complex manifold,

K [25–28]. Instead of working on K directly, it is convenient to work with fields that

are defined on G and then demanding that their dependence on the isotropy group H

defining K, K = H\G, be fixed in such a way that they are equivalent to tensor fields on

K [27]. We shall denote an element of G by uI
i where G (H) acts to the right (left) on the

small (capital) index, and its inverse by vi
I . In flat D = 4 superspace the derivatives are

(∂a,DαiD̄
i
α̇), i = 1, . . . N . The introduction of the new variables allows us to define subsets

of the odd derivatives that mutually anticommute without breaking the R-symmetry. Such

a subset with p Ds and q D̄s is called a Grassmann (G)-analytic structure of type (p, q),

and a G-analytic field of type (p, q) is one that is annihilated by all of these derivatives.

For N = 8 we can take H = S(U(p)×U(8−(p+q))×U(q) and set uI
i = (ur

i, uR
i, ur′

i).

The (p, q) mutually anticommuting derivatives are

Dαr := ur
iDαi and D̄r′

α̇ := D̄i
α̇vi

r′ , (3.1)

for r = 1, · · · p and r′ = (N − q), · · ·N . As the superfields will also depend on u we need

to introduce derivatives on SU(8); they are the right-invariant vector fields DI
J and they

satisfy the Lie algebra relations of su(8). Their action on the u, v variables is given by

DI
JuK

k = δK
JuI

k − 1

8
δI

JuK
k ; DI

Jvk
K = −δIKvk

J +
1

8
δI

Jvk
K . (3.2)

The derivatives split into subsets: (Dr
s,DR

S ,Dr′
s′) correspond to the isotropy subal-

gebra while (Dr
S ,Dr

s′ ,DR
s′) can be thought of as the components of the ∂̄-operator on
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the complex manifold K. The remaining derivatives are the complex conjugates of these.

This means that we can have superfields that are G-analytic (annihilated by (Dαr, D̄
r′

α̇ )),

superfields that are harmonic, or H-analytic (annihilated by (Dr
S,Dr

s′ ,DR
s′), and super-

fields that are annihilated by both sets since they are compatible in the sense that they

are closed under graded commutation. We shall call such superfields analytic. They are

the integrands for the short invariants. The fact that they are H-analytic implies that they

have short expansions in u, because K is compact as well as complex, and the fact that

they are G-analytic means that they can be integrated over 32 − 2(p+ q) odd coordinates

rather than the full 32.

The N = 8 field strength superfield Wijkl is in the 70 of SU(8); it is totally antisym-

metric and self-dual on its SU(8) indices and satisfies

DαiWjklm = Dα[iWjklm]

D̄i
α̇Wjklm = −4

5
δi
[jD̄

n
α̇Wklm]n . (3.3)

The R4 invariant can be written in (4, 4) superspace. The field W := 1
4!ε

rstuur
i . . . uu

lWijkl

is easily seen to be G-analytic and is also obviously H-analytic on the coset S(U(4) ×
U(4))\SU(8). It is preferable to write W as W1234 as this exhibits the charges explicitly.

The R4 invariant is

I =

∫
d4x du [D5 . . . D8D̄

1 . . . D̄4]2 (W1234)
4 (3.4)

where du denotes the standard measure on the coset and the theta-integration is represented

as differentiation with respect to all of the spinorial derivatives that do not annihilate W .

It is easily seen to be unique as it makes use of the only dimension-zero analytic integrand

with the right charges. The other two short invariants ∂4R4 and ∂6R4 can be written in a

similarly unique fashion as integrals over (2, 2) and (1, 1) harmonic superspaces respectively.

We now want to try to generalise this picture to curved superspace.3 In superspace the

tangent spaces split invariantly into even and odd sectors (there is no supersymmetry in

the tangent space) and for N = 8 the structure group is SL(2,C) × SU(8). Because of the

split structure, it is always best to work in a preferred basis. The preferred basis one-forms

are related to the coordinate one-forms by the supervielbein, EA = dzMEM
A; their duals

are denoted EA. We set EA = (Ea, Eαi, Ēα̇
i ), where a is a vector index. SL(2,C) acts on

the spinor indices α, α̇ and also on the vector index a via the corresponding element of the

Lorentz group, while the local SU(8) acts on i, j, etc. We also have a set of connection

one-forms ΩA
B with

Ωαi
βj = δα

βΩi
j + δi

jΩα
β

Ωab → Ωαα̇,ββ̇ = εα̇β̇Ωαβ + εαβΩ̄α̇β̇ , (3.5)

where we have used the usual relation between vector indices and pairs of spinor indices.

Ωiβ̇
α̇j is the complex conjugate of Ωαi

βj and the off-diagonal elements of ΩA
B are zero. The

3N = 2 curved harmonic superspace was first studied in [29]; the sort of analysis given here was described

for N ≤ 4 conformal supergravity theories in [30].
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torsion and curvature tensors are defined in the usual way, using the covariant exterior

derivative D, by

TA = DEA; RA
B = dΩA

B + ΩA
CΩC

B . (3.6)

InN = 8 supergravity, the scalars are described by an element V of the group E7(7) [31],

where the local SU(8) acts from the left and the rigid E7(7) acts from the right. The Maurer-

Cartan form Φ is

Φ = dVV−1 = P +Q , (3.7)

where P is in the 70 of SU(8) and Q is the su(8) connection which is to be identified with

Ωi
j above. In the geometrical quantities, the scalars only appear through the vector part

of the one-form P , i.e. Pa, which one can think of as a suitably defined pullback of the

covariant derivative for the scalar target manifold.

The constraints on the various tensors that need to be imposed in order to describe

on-shell N = 8 supergravity can be found in [32, 33]. At dimension zero, the only non-

vanishing torsion is

T j c

αi,β̇
= −iδij(σc)αβ̇ , (3.8)

and the only non-vanishing dimension one-half torsion is

T γ̇
αi,βj,k = εαβχ̄

γ̇
ijk (3.9)

and its conjugate, where χijk
α is the superfield whose leading component is the physical

spinor field that transforms under the 56 of SU(8).

This brief outline is enough to enable us to discuss whether there can be harmonic

superspace measures of the required type in the non-linear theory where the SU(8) R-

symmetry becomes local. We need to enlarge the superspace by adjoining some group

variables u. The resulting space is the principal bundle associated with the SU(8) part

of the structure group and harmonic superspace is the associated bundle with typical

fibre K = H\SU(8), for the appropriate isotropy group H. The idea is to search for

appropriate CR structures, that is, complex, involutive distributions which involve 2(p+q)

odd directions and the accompanying holomorphic structures in the bundle coordinates.

The way to do this is to introduce the horizontal lift basis in the total space of the bundle

corresponding to a preferred basis in the base manifold. We have

ẼA := EA − ΩAI
JDJ

I , (3.10)

where one switches to an I index from an i index by means of uI
i and its inverse, as in the

flat case. We then have

[ẼαI , ẼβJ ] = −TαIβJ
CẼC +RαIβJK

LDL
K + . . . , (3.11)

where the additional terms are irrelevant for this discussion, and similarly for the dotted

and mixed commutators of the spinorial lifted bases. Now suppose that we require the CR

structure to include Ẽαr, r = 1 . . . p and Ẽs′

β̇
, s′ = N − q, . . . N . We can see immediately

that this leads to consistency conditions on the dimension one-half torsion, namely

Tαr,βs,γ̇t = Tαr,βs,γ̇T = 0 , (3.12)
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since otherwise these derivatives would not close among themselves. From the explicit

form of the dimension one-half torsion (3.9) we can see that the only possibility is that

r can only take on one value. A similar result holds for the dotted indices, and so we

conclude that we can only have Grassmann analyticity of type (1, 1) in the full theory.

There are also conditions on the curvature; for example, one must have Rα1,β1,1
8 = 0.

From the explicit expressions for the dimension-one curvature given in [32, 33], one can

see that these conditions are indeed satisfied. One can also check that it is possible to

have (1, 1) analytic fields carrying U(1) charges in pairs of the type 8
1; this is necessary if

there are to be integrands with the right charges that can be integrated with respect to

the (1, 1) measure. As a CR structure is necessary in order that we can have harmonic

superspaces with fewer odd coordinates (also called analytic superspaces) it follows that

harmonic measures do not exist for (p, q) = (4, 4) and (2, 2) G-analyticity, and therefore

that there can be no straightforward generalisation of theR4 and ∂4R4 invariants, expressed

as harmonic superspace integrals, to the full non-linear theory that are compatible with

local SU(8) symmetry.

In the case of (1, 1) analyticity, relevant to the ∂6R4 invariant, the measure should

exist, which suggests that this invariant can be written as an harmonic superspace integral.

However, the harmonic measure is definitely not R-symmetric, which implies that the

integrand must be a non-trivial function of the scalars V. In the formulation with gauged

SU(8) and linearly realised rigid E7(7), the measure will be E7(7) invariant whereas the

integrand will necessarily transform non-trivially with respect to E7(7). It would then

follow that the ∂6R4 invariant is not E7(7) invariant, in agreement with the conclusion of

the preceding section.

Note that this is not in contradiction with the existence of BPS duality invariants in

higher dimensions (such as R4 in D = 8, ∂4R4 in D = 7 and ∂6R4 in D = 6), since the

BPS invariants are not unique in dimensions D > 5.

The non-existence of harmonic measures for the 1/2 and the 1/4 BPS invariants is

not in contradiction with the existence of these non-linear invariants in the full non-linear

theory. Indeed as we will discuss in the next section, not all supersymmetry invariants

can be written as harmonic superspace integrals, and some are only described in terms of

closed super-D-form.

4 Invariants as closed super-four-forms

An alternative approach to the construction of superinvariants is afforded by the ectoplasm

formalism [34–36]. In D-dimensional spacetime, consider a closed super-D-form, LD, in

the corresponding superspace. The integral of the purely bosonic part of this form over

spacetime is guaranteed to be supersymmetric by virtue of the closure property. Moreover,

if LD is exact it will clearly give a total derivative so that we are really interested in the Dth

superspace cohomology group. As we have seen in the preceding section, one cannot define

a harmonic measure for every invariant, and in particular, not for the 1/2 and 1/4 BPS

invariants in N = 8 supergravity. However, according to the algebraic Poincaré Lemma,

any supersymmetry invariant necessarily defines a closed super-D-form.
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The analysis below is a little involved, but the basic ideas are easy to state. The

non-vanishing components of a closed super-four-form in N = 8 superspace can define two

types of cocycle: those that correspond directly to (sub)superspace integrals and those that

do not. The former will correspond to allowed measures, and so, of the short invariants,

only the one-eighth BPS one can be expected to be of this type. The other two will not,

and hence will have different types of cocycle to those of full superspace integrals; we can

thus expect these invariants to be protected by virtue of the algebraic renormalisation

procedure. The explicit expressions for the closed BPS super-four-forms are difficult to

construct and we will not attempt to do this here. We can, however, obtain information

about E7 invariance by studying the linearised approximation. We shall show that the

linearised cocycles for R4 in N = 8 and N = 5, 6 and ∂2R4 in N = 6 are not invariant

under linearised duality transformations (constant shifts of the scalars) so that the full

invariants cannot possibly be. Indeed, the linearised four-point contribution to the lowest

component of the super-four-form contributes directly to the spacetime invariant at eight

points as can be seen from (4.4) below.

In order to analyse superspace cohomology, it is convenient to split forms into their

even and odd parts. Thus a (p, q)-form is a form with p even and q odd indices, totally

antisymmetric on the former and totally symmetric on the latter. The exterior derivative

can likewise be decomposed into parts with different bi-degrees,

d = d0 + d1 + t0 + t1 , (4.1)

where the bi-degrees are (1, 0), (0, 1), (−1, 2) and (2,−1) respectively. So d0 and d1 are

basically even and odd derivatives, while t0 and t1 are algebraic. The former acts by

contracting an even index with the vector index on the dimension-zero torsion and then

by symmetrising over all of the odd indices. The equation d2 = 0 also splits into various

parts of which the most relevant components are

t20 = 0; d1t0 + t0d1 = 0; d2
1 + t0d0 + d0t0 = 0 . (4.2)

The first of these equations allows us to define t0-cohomology groups, Hp,q
t [37], and

the other two allow us to introduce the spinorial derivative ds which maps Hp,q
t to Hp,q+1

t

by ds[ωp,q] = [d1ωp,q], where the brackets denote Ht cohomology classes. This also squares

to zero, and hence allows one to define spinorial cohomology groups Hp,q
s [38, 39]. The

point of this is that one can often generate closed super-D-forms from elements of these

cohomology groups.

In the context of curved superspace it is important to note that the invariant is con-

structed from the top component in a coordinate basis,

I =
1

D!

∫
dDx εmD ...m1 EmD

AD · · ·Em1
A1 LA1...AD

(x, θ = 0) . (4.3)

One transforms to a preferred basis by means of the supervielbein EM
A. At θ = 0

we can identify Em
a with the spacetime vielbein em

a and Em
α with the gravitino field
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ψm
α (where α includes both space-time α, α̇ and internal i indices for N = 8). In four

dimensions, we therefore have

I =
1

24

∫ (
ea∧e

b
∧e

c
∧e

d Labcd + 4ea∧e
b
∧e

c
∧ψ

αLabcα + 6ea∧e
b
∧ψ

α
∧ψ

β Labαβ

+4ea∧ψ
α
∧ψ

β
∧ψ

γLaαβ γ + ψ
α
∧ψ

β
∧ψ

γ
∧ψ

δLαβ γδ

)
. (4.4)

By definition, each component Labcd, Labcα, Labαβ, Laαβ γ , Lαβ γδ is supercovariant at

θ = 0. This is a useful formula because one can directly read off the invariant in components

in this basis.

In N = 8 supergravity, all the non-trivial t0-cohomology classes lie in H0,4
t . Invariants

are therefore completely determined by their (0, 4) components Lαβ γδ, and all non-trivial

L0,4 satisfying [d1L0,4] = 0 in t0-cohomology (i.e. that give rise to non-trivial elements of

H0,4
s ) define non-trivial invariants. H0,4

t is the set of functions of fields in the symmetric

tensor product of four 2×8⊕ 2×8 of SL(2,C)× SU(8) without SU(8) contractions (since

such functions would then be t0-exact). Because of the reducibility of the representation,

it will be convenient to decompose Lαβ γδ into components of degree (0, p, q) (p + q = 4)

with p 2× 8 and q 2 × 8 symmetrised indices.

We will classify the elements of H0,4
t into three generations.4 The first generation

corresponds to elements that lie in the antisymmetric product of four 2 × 8 ⊕ 2 × 8 of

SL(2,C)× SU(8), and can therefore be directly related to the top component L4,0 through

the action of the superderivatives. We will write M0,p,q for the corresponding components

of a given L0,4. They lie in the following irreducible representations of SL(2,C) × SU(8):

M0,4,0 : [0, 0|0200000]
M0,3,1 : [1, 1|1100001]
M0,2,2 : [2, 0|2000010]

M̄0,0,4 : [0, 0|0000020]
M̄0,1,3 : [1, 1|1000011]
M̄0,2,2 : [0, 2|0100002] .

(4.5)

In order to understand the constraints that these functions must satisfy in order for

L0,4 to satisfy the descent equation

[d1L0,4] = 0 , (4.6)

it is useful to look at the possible representations of d1L0,4 which define H0,5
t cohomology

classes in general, without assuming any à priori constraint. We will split d1 = d1,0 + d0,1

according to the irreducible representations of SL(2,C) × SU(8). One computes that

[d1,0M0,4,0] : [1, 0|1200000]
[d0,1M0,4,0] : [0, 1|0200001]
[d1,0M0,3,1] : [0, 1|0200001] ⊕ [2, 0|2100001]
[d0,1M0,3,1] : [1, 0|1100010] ⊕ [1, 2|1100002]
[d1,0M0,2,2] : [1, 0|1100010] ⊕ [3, 0|3000010]
[d0,1M0,2,2] : [2, 1|2000011]

[d0,1M̄0,0,4] : [0, 1|0000021]
[d1,0M̄0,0,4] : [1, 0|1000020]
[d0,1M̄0,1,3] : [1, 0|1000020] ⊕ [0, 2|1000012]
[d1,0M̄0,3,1] : [0, 1|0100011] ⊕ [2, 1|2000011]
[d0,1M̄0,2,2] : [0, 1|0100011] ⊕ [0, 3|0100003]
[d1,0M̄0,2,2] : [1, 2|1100002] .

(4.7)

4There is also an element of H
0,4
t of degree (0, 2, 2) in the [0, 0|0100010] representation. This seems

unlikely to play any role and we shall not discuss it further here.
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In order for the component

L0,4 =
2∑

p=0

(
M0,4−p,p + M̄0,p,4−p

)
(4.8)

to satisfy the descent equation (4.6), the components d1M0,p,q must individually vanish

in the [1, 0|1200000], [2, 0|2100001], [3, 0|3000010] representations and their complex con-

jugates, and their components in the [0, 1|0200001], [1, 0|1100010], [1, 2|1100002] and their

complex conjugates must cancel each other. This will indeed be the case if the invariant

in question can be defined as a superaction and all the components of L0,4 descend from

a primary operator satisfying the appropriate constraint. However, as we have seen in the

preceding section, there is no harmonic measure for the 1/2 and 1/4 BPS invariants, and

this situation is therefore not the most general.

What will happen for these invariants is that, although the components of d1M0,p,q in

the [0, 1|0200001], [1, 0|1100010] and their complex conjugate representations cancel each

other, the components in the [1, 0|1200000], [2, 0|2100001], [3, 0|3000010], [1, 2|1100002] and

the corresponding complex conjugates will not vanish. The latter will nevertheless be

cancelled by the d1 variation of a second generation of functions N0,p,q in H0,4
t ,

N0,4,0 : [2, 0|2100000]
N0,3,1 : [3, 1|3000001]

N̄0,0,4 : [0, 2|0000012]
N̄0,1,3 : [1, 3|1000003]

N0,2,2 : [2, 2|2000002] . (4.9)

Indeed, one computes that the components of [d1N0,p,q] lie in the following represen-

tations

[d1,0N0,4,0] : [1, 0|1200000] ⊕ [3, 0|3100000]
[d0,1N0,4,0] : [2, 0|2100001]
[d1,0N0,3,1] : [2, 0|2100001] ⊕ [4, 1|4000001]
[d0,1N0,3,1] : [3, 0|3000010] ⊕ [3, 2|3000002]
[d1,0N0,2,2] : [1, 2|1100002] ⊕ [3, 2|3000002]

[d0,1N̄0,0,4] : [0, 1|0000021] ⊕ [0, 3|0000013]
[d1,0N̄0,0,4] : [0, 2|1000012]
[d0,1N̄0,1,3] : [0, 2|1000012] ⊕ [1, 4|1000004]
[d1,0N̄0,3,1] : [0, 3|0100003] ⊕ [2, 3|2000003]
[d0,1N0,2,2] : [2, 1|2000011] ⊕ [2, 3|2000003] .

(4.10)

In addition to cancelling the components [d1M0,p,q], the components [d1Np,q] must

cancel each other in the [3, 2|3000002] representation and its complex conjugate. Then

there are two possibilities: either the components of [d1Np,q] identically vanish in the

[3, 0|3100000], the [4, 1|4000001] and their complex conjugates, or a third generation of

O0,4,0 functions and their Ō0,0,4 complex conjugates in H0,4
t is required to cancel them,

O0,4,0 : [4, 0|4000000] Ō0,0,4 : [0, 4|0000004] . (4.11)

Now, [d1O0,4,0] lies in the following representations of H0,5
t

[d1,0O0,4,0] : [3, 0|3100000] ⊕ [5, 0|5000000]
[d0,1O0,4,0] : [4, 1|4000001]

[d0,1Ō0,0,4] : [0, 3|0000013] ⊕ [0, 5|0000005]
[d1,0Ō0,0,4] : [1, 4|1000004] ,

(4.12)
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and in addition to cancelling [d1Np,q] in the [3, 0|3100000], the [4, 1|4000001] and their com-

plex conjugates, the components of d1,0O0,4,0 in the [5, 0|5000000] must identically vanish.

To conclude this discussion, we have seen from the t0-cohomology analysis that there

exist more general cocycle structures than those associated to invariants that can be writ-

ten as (harmonic) superspace integrals. The absence of harmonic measures for the 1/2

and 1/4 BPS invariants is therefore not in contradiction with the existence of such in-

variants. However, their cocycle structures involve two or three supermultiplets instead

of only one, corresponding to the second generation of operators N0,p,q, and possibly the

third O0,4,0. The expectation is that the 1/2 BPS invariant will admit a cocycle involving

three generations,

L1/2

0,4 =

2∑

p=0

(
M 1/2

0,4−p,p +M̄ 1/2

0,p,4−p

)
+

1∑

p=0

(
N 1/2

0,4−p,p + N̄ 1/2

0,p,4−p

)
+N 1/2

0,2,2 +O1/2

0,4,0 + Ō1/2

0,0,4 , (4.13)

and the 1/4 BPS invariant will admit a cocycle involving two generations,

L1/4

0,4 =

2∑

p=0

(
M 1/4

0,4−p,p + M̄ 1/4

0,p,4−p

)
+

1∑

p=0

(
N 1/4

0,4−p,p + N̄ 1/4

0,p,4−p

)
+N 1/4

0,2,2 . (4.14)

We have not derived the explicit functions which define these cocycles, but we would

like to point out that the F 4 invariants in super Yang-Mills theory in ten dimensions define

explicit example of such cocycles involving several generations of t0-cohomology classes [12].

From this perspective, it seems that a careful study of the implications of supersymmetry

Ward identities within the algebraic approach should rule out the possibility of both the 3

and 5-loop logarithmic divergences in N = 8 supergravity. (We recall also that the 4-loop

divergence has no available on-shell nonvanishing counterterm [6].) However, the existence

of a 1/8 BPS harmonic measure suggests that the 1/8 BPS cocycle has the same structure

as the cocycle associated to full superspace integral invariants, and therefore that the

supersymmetry Ward identities alone will be unable to rule out the corresponding 6-loop

divergence within the algebraic approach. However, as we have discussed in the preceding

section, the integrand in that case must be a function of the scalar superfield, which implies

that it cannot be E7(7) invariant, and therefore that the E7(7) Ward identities nonetheless

rule out this divergence.

The non-existence of a 1/2 BPS measure does not permit one to conclude directly that

the R4 invariant cannot be E7(7) invariant, without relying on the dimensional reduction

argument presented in the first section. Nevertheless, it follows from the structure of

the invariant (4.4), that knowledge of the cocycle L1/2

4 in the quartic field approximation

provides information about terms of orders up to 8 in the invariant. If I1/2 were invariant

with respect to E7(7), then it would follow from the representation of E7(7) on the fields

that each component L1/2

abcd, L
1/2

abcα, L
1/2

abαβ, L
1/2

aαβ γ , L
1/2

αβ γδ would independently have to be

E7(7) invariant. In the linearised approximation, this means that each component would be

invariant at lowest order with respect to a constant shift of the scalar superfield W ijkl. It

was pointed out in [3] that Labcd is shift invariant, but we shall see that the last component

L1/2

αβ γδ is not, hence establishing that I1/2 is not fully E7(7) invariant.
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To start with, note that the 1/2 BPS invariant admits a superaction form in the

linearised approximation. It follows that the second and third generations of (0, 4) compo-

nents are not required in this approximation, and that N 1/2

0,p,q and O1/2

0,4,0 are at least quintic

in fields. In order to establish the non-shift-invariance of L1/2

0,4 in the quartic field approxi-

mation, it will be enough to consider its M 1/2

0,4,0 component. The latter can be obtained by

acting on the 1/2 BPS primary operator defined by W 4 in the [0004000] of SU(8) with the

D8 in the [0, 0|0002000], and D̄4 in the [0, 0|0000020]. With the conventional notation5

DαpW
ijkl = δ[ipχ

jkl]
α , Dαlχ

ijk
β = δ

[i
l F

jk]
αβ , DαkF

ij
βγ = δ

[i
k ρ

j]
αβγ , Dαjρ

i
βγδ = δi

jCαβγδ ,

(4.15)

one obtains that D8W 4 in the [0, 0|0002000] has the form

D8W 4 ∼W 2C2 +WχρC +WF 2C +WFρ2 + χ2FC + χF 2ρ+ F 4 , (4.16)

where the index contractions and symmetrisations are unambiguously determined by the

representation. Since we are interested in the shift invariance of M 1/2

0,4,0, we can already

disregard the three last terms. Applying finally D̄4 to (4.16), one obtains various terms

linear in W, terms in W 3C, W 2F 2, W 2χρ and Wχ2F involving four derivatives, terms in

χ̄WχC and χ̄WFρ involving three derivatives, and terms in F̄Wρ2 and WF̄FC involving

two derivatives. They are clearly all independent, taking into account the equations of

motion, and one can discuss them separately. The term in W 3C is, for example, of the form

Wpqij∂
a∂bW pqrs∂c∂dWklrsC

(+)
ac,bd , (4.17)

where C(+) denotes the self-dual part of the Weyl tensor, i.e. Cαβγδ in spinor notation.

The shift variation of (4.17) is a total derivative, but it is clearly non-vanishing. Similarly,

the terms in W 2F 2 take the form

1

2
W 2∂2F∂2F +W∂W∂F∂2F +W∂

(
∂2W∂F∂F

)
, (4.18)

where the three terms involve one product of W 2 in the [0002000] with F 2 in the [0000020],

one product of W 2 in the [0010100] with F 2 in the [0000101], while the third term moreover

involves a product of W 2 in the [0100010] with F 2 in the [0001000]. Once again, the shift

variation of this set of terms is a non-vanishing total derivative. Hence, the shift variation of

M 1/2

0,4,0 can be shown to be a non-vanishing total derivative. We recall that E7(7) invariance

would be required separately for each of the L(p,q) forms in the complete invariant (4.4),

so at leading order each of these forms would need to be strictly shift invariant (total

derivatives included) in order to achieve compatibility with E7(7). Moreover, the structure

of the 1/2 BPS supermultiplet implies that M 1/2

0,4,0 is uniquely determined from the primary

operator W 4, and the 1/2 BPS cocycle does not admit other representatives, so no other

terms could come to the rescue of the E7(7) symmetry.

We conclude that linearised analysis permits one to establish the E7(7) noninvariance

of the full 1/2 BPS R4 counterterm. However, this argument does not apply to the full

5That is, F, ρ and C are respectively the (2, 0), (3, 0) and (4, 0) components of the spin one, three-halves

and two field-strength tensors.
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1/4 BPS ∂4R4 counterterm. Indeed, one can define the 1/4 BPS counterterm in the linear

approximation by acting with the 1/2 BPS measure on the non-primary 1/2 BPS quartic

term ∂aW∂bW∂aW∂bW in the [0004000] of SU(8), which is manifestly shift invariant. But,

of course, the shift invariance of the cocycle is a necessary but not sufficient condition for

establishing E7(7) invariance of the corresponding supersymmetry invariant, and the dimen-

sional reduction argument of the first section shows indeed that it is not E7(7) invariant.

5 N = 5, 6 supergravity

Note that the demonstration that E7(7) symmetry is preserved in perturbative theory for

N = 8 supergravity [17], generalises straightforwardly to theN = 5 and N = 6 cases for the

duality symmetries SU(5, 1) and SO∗(12) respectively, because all the one-loop SL(2,C)×
U(N) anomalies vanish [22]. Moreover, the linearised superalgebra in flat space can be

embedded consistently into the corresponding superconformal algebra su(2, 2|N) similarly

to the N = 8 supergravity case, and one can again rely on superconformal representation

analysis to prove that the BPS invariants are unique in these theories [6]. In this section,

we will show that analysis of the linearised super 4-form associated to the corresponding

R4 invariants demonstrate that they also are not duality invariants, as in the N = 8

supergravity case. We will correspondingly prove the absence of logarithmic divergences

at three loops in these theories. Similarly, we will prove that the ∂2R4 invariant is not

SO∗(12) invariant in N = 6, incidentally proving that there is no logarithmic divergence

at 4-loops.

In N = 6 supergravity, the complex scalar superfield Wij and its complex conjugate

W ij define the following multiplet by the recursive action of Dαi:

DαkWij =
1

6
εijklmnχ

lmn
α , Dαlχ

ijk
β = δ

[i
l F

jk]
αβ , DαkF

ij
βγ = δ

[i
k ρ

j]
αβγ , Dαjρ

i
βγδ = δi

jCαβγδ ,

DαkW
ij = δ

[i
kχ

j]
α , Dαjχ

i
β = δi

jFαβ . (5.1)

The linearised R4 invariant can be obtained by acting with D̄8D8 in the [0, 0|02020] rep-

resentation of SL(2,C)×SU(6) on the 1/3 BPS operator WijWklW
pqWmn in the [0, 0|02020]

representation.6 As for N = 8 supergravity, the cocycle’s last components are M0,p,q with

M0,4,0 : [0, 0|02000]
M0,3,1 : [1, 1|11001]
M0,2,2 : [2, 0|20010]

M̄0,0,4 : [0, 0|00020]
M̄0,1,3 : [1, 1|10011]
M̄0,2,2 : [0, 2|01002] ,

(5.2)

and we will consider in particular the shift invariance of the M0,4,0 component. The lat-

ter can be obtained by acting with D̄4 in the [0, 0|00020] and D8 in the [0, 0|00020] on

WijWklW
pqWmn. D8W 2W̄ 2 gives the [0, 0|00020] combination

W ijW klC2 +W ijχ[kρl]C +W ijFF klC +W ijFρ[kρl] + . . . (5.3)

6We will not write explicitly the U(1) weight, which is zero for both the measure and the integrand.
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where the dots stand for terms that are shift invariant. Applying then D̄4 to this expression,

one obtains again various terms, including a single term in W 3C coming from WF 2C

which reads

εijpqrsW
pq∂2W rs∂2WklC , (5.4)

projected into the [0, 0|02000] representation. Similarly, one obtains various terms in

W ijW kl FmnF pq which appear in combinations similar to (4.18) in N = 8; as well as

one term in W ijWklFF
pq coming from W ijFF klC,

εijpqrsW
pqF∂2Wkl∂

2F rs (5.5)

projected into the [0, 0|02000] representation. It follows that the result of a shift of the

scalar field W ij in M0,4,0 is non-vanishing, and not even a total derivative. We therefore

conclude that the unique R4 invariant in N = 6 supergravity is not SO∗(12) invariant.

The ∂2R4 counterterm can be obtained in a similar way from the 1/6 BPS opera-

tor W ipW jqWkpWlq in the [0, 0|20002] representation, or from the non-primary 1/3 BPS

operator WijW
pq∂aWkl∂aW

mn in the [0, 0|02020]. Note that any combination with two

derivatives would necessarily be a total derivative in the N = 8 theory because the scalar

field is then real, which explains why there is no ∂2R4 invariant in that case. All the possi-

ble ways of adding two derivatives to WijWklW
pqWmn are in fact equivalent, up to a total

derivative. One can easily see that one cannot adjust the derivatives such that both M0,4,0

and M̄0,0,4 are shift invariant. However, one must also consider the possibility of defining

the cocycle directly from the 1/6 BPS operator W ipW jqWkpWlq. In that case M0,4,0 is ob-

tained by acting with D̄6 in the [0, 0|00200] and D10 in the [0, 0|00002] on W ipW jqWkpWlq.

Applying D10, one already obtains an operator that does not depend on the scalars, so

M0,4,0 will be trivially shift invariant in this case. In order to exhibit the non-shift in-

variance of the 1/6 BPS cocycle, we must therefore consider other components. We will

consider the M0,2,2 component in the [2, 0|20010] of SL(2,C) × SU(6). The latter can be

obtained from the 1/6 BPS operator W ipW jqWkpWlq by acting with D̄8 in the [0, 0|02000]
and D8 in the [2, 0|00101]. The action of D̄8 gives a Lorentz scalar in the [02000]

WijWklC̄C̄ +Wijχ̄[kρ̄l]C̄ +WijF̄ F̄klC̄ +WijF̄ ρ̄[kρ̄l] + . . . (5.6)

plus a Lorentz scalar in the [21000]

Wi[jχ̄kρ̄l]C̄ + . . . (5.7)

where as before the dots stand for terms that are invariant with respect to a constant

shift of the scalar fields, and the barred fields are the complex conjugate of the unbarred

ones, which accordingly carry dotted Lorentz indices. The action of D8 on these terms is

quite complicated, and we will focus on terms that are the most susceptible to fail shift

invariance, namely the terms carrying two Wij not covered by derivatives. One can easily

check that only the term W 2C̄2 can produce such a term, and indeed produces one in

the [2, 0|20010]
Wp(iWj)q∂

4χp∂3χ̄qkl (5.8)
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where all the Lorentz indices of ∂4χp in the [5, 4|00001] and ∂3χ̄qkl in the [3, 4|00100] are

symmetrised, and are contracted such that ∂4χp∂3χ̄qkl is in the [2, 0|00101]. The action of

a constant shift of the scalar fields on this term gives a term in W∂4χ∂3χ̄ which clearly

cannot be compensated by other terms in M0,2,2, although it might combine with other

terms to give a non-vanishing total derivative. (But recall that, since this expression is

still to be multiplied by gravitino factors, such a total derivative variation still constitutes

duality non-invariance.)

Although the ∂2R4 invariant admits several cocycle representatives in N = 6 super-

gravity, none of them is invariant with respect to a constant shift of the scalar fields. We

conclude that this candidate counterterm is not invariant with respect to the SO∗(12) dual-

ity symmetry, and therefore that there is no logarithmic divergence at 4-loop in the theory.

In N = 5 supergravity, the complex scalar superfield Wi and its complex conjugate

W i define the following multiplet by the recursive action of Dαi :

DαiWj = χαij , Dαkχβij =
1

6
εijklpF

lp
αβ , DαkF

ij
βγ = δ

[i
k ρ

j]
αβγ , Dαjρ

i
βγδ = δi

jCαβγδ ,

DαjW
i = δi

jχα . (5.9)

The linearised R4 invariant can be obtained by acting with D̄8D8 in the [0, 0|2002]
representation of SL(2,C)× SU(5) on the 1/5 BPS operator WiWjW

kW l in the [0, 0|2002]
representation. As for N = 8 supergravity, the cocycle’s last components are M0,p,q with

M0,4,0 : [0, 0|0200]
M0,3,1 : [1, 1|1101]
M0,2,2 : [2, 0|2010]

M̄0,0,4 : [0, 0|0020]
M̄0,1,3 : [1, 1|1011]
M̄0,2,2 : [0, 2|0102] ,

(5.10)

and we will consider in particular the shift invariance of the M0,4,0 component. The lat-

ter can be obtained by acting with D̄4 in the [0, 0|0020] and D8 in the [0, 0|0002] on

WiWjW
kW l. Evaluating D8W 2W̄ 2 gives the [0, 0|0002] combination

W iW jC2 +W (iχρj)C + . . . (5.11)

where the dots stand for terms that are shift invariant. Applying then D̄4 to this expression,

one again obtains various terms. Although there is no W 3C term, the terms in W 2F 2 are

εijpqrεklstuW
pW s∂2F qr∂2F tu , (5.12)

and

εijpqrεklstuW
p∂W q∂F rs∂2F tu , (5.13)

both being projected into the [0, 0|0200]. The term WχρC also produces a term

εijpqrW
pχ∂χkl∂

2F qr , (5.14)

projected into the [0, 0|0200]. Once again, the shift variation of M0,4,0 does not vanish,

and is not a total derivative either. We therefore conclude that the unique R4 invariant in

N = 5 supergravity is not SU(5, 1) invariant.
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To conclude this section, we have shown that duality invariance implies the absence

of 3-loop divergences in N = 5, 6 supergravity, and of 4-loop divergences in N = 6 super-

gravity. In addition, as in the N = 8 case, there are only harmonic measures of type (1, 1)

in both of these theories. This means that there are non-linear measures for the N = 5 R4

and the N = 6 ∂2R4 invariants, but there must be a violation of duality group symmetry

as there are no duality invariant measures. On the other hand, there is no non-linear mea-

sure for the N = 6, R4 invariant from which one would conclude that the corresponding

non-linear cocycle is non-standard hence protected by algebraic renormalisation.

6 Concluding remarks

In this article, we have advanced field-theoretic arguments in favour of the idea that the

short BPS invariants in N = 8 supergravity fail to be E7(7) invariant. From this, one

concludes that the onset of divergences should be postponed to at least seven loops, where

there is a candidate E7(7) invariant counterterm, namely the volume of superspace. For

the short invariants, we have presented arguments based on the impossibility of achieving

a trivial scalar factor in front of the purely gravitational R4, ∂4R4 and ∂6R4 terms because

a non-trivial scalar factor is required by dimensional reduction and because the uniqueness

of the linearised D = 4 counterterms at the 3, 5 and 6 loop orders rules out the possibility

of a cancellation between inequivalent terms coming from higher dimensions. We have

also demonstrated that the R4 invariant is indeed not E7(7) invariant by establishing the

non-invariance of the last component of the associated linearised closed super four-form

under constant shifts of the scalar fields, i.e. under linearised e7 transformations. This

comes about because this linearised term will affect the four-gravitino term (an eight-point

contribution) in the non-linear spacetime invariant.

In addition, we have investigated the question of whether appropriate measures exist in

curved N = 8 superspace. In two cases, corresponding to the R4 and ∂4R4 invariants, the

answer is no, whereas for the ∂6R4 invariant a measure seems to be available. However,

even in this case, there is no available integrand that could be E7(7) invariant as such

an integrand would have to be constructed from the undifferentiated scalars. We stress

that the non-existence of harmonic measures for the R4 and ∂4R4 invariants does not

imply that there are no such invariants in the full theory. Indeed, our analysis of the t0-

cohomology in N = 8 supergravity demonstrates that in principle there exist closed super-

four-forms whose structure is incompatible with the possibility of writing them as harmonic

superspace integrals. This translates in components into the property that such invariants

admit terms quartic in undifferentiated gravitino fields with a tensor structure that cannot

appear in harmonic superspace integrals (at least without introducing a prepotential). This

suggests that the non-linear R4 and ∂4R4 invariants are associated to super-four-forms with

a structure different from that of the other invariants, so that the supersymmetry Ward

identities within the algebraic approach would by themselves be sufficient to rule out the

possibility of the corresponding logarithmic divergences at 3 or 5-loops.

A further aspect of this purely field-theoretic analysis is that there are UV divergence

implications for supergravity theories with fewer supersymmetries. The R4 counterterm is
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a BPS invariant for N = 5 and N = 6 and the superspace arguments given above adapt

to these cases straightforwardly. Indeed, we have shown that the closed super four-forms

associated to these counterterms are not invariant under constant shifts of the scalar fields,

hence establishing that they are not duality-invariant. The same argument applies to the

∂2R4 BPS invariant in N = 6 (recalling that there is a linearised four-loop invariant in

N = 6, unlike the case of N = 8). It therefore follows that there are non-renormalisation

theorems at three loops for N = 5, 6 and also at four loops for N = 6. There are non-linear

harmonic measures for R4 in N = 5 and ∂2R4 in N = 6 but the corresponding integrands

cannot be duality invariant, while the cocycle for R4 in N = 6 is non-standard thus

providing additional evidence that these counterterms are protected by duality symmetries.

The first divergences in these theories are therefore likely to occur at five and four loops

for N = 6 and 5. The counterterm in both cases is the volume of superspace which should

integrate to ∂4R4 for N = 6 and ∂2R4 for N = 5 (together with higher-order terms).

Note added. After the first version of this article was posted to the arXiv, a paper

discussing duality symmetries of invariants from a somewhat different perspective ap-

peared [40].
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