369 research outputs found

    Effects of edible bird's nest (EBN) on cultured rabbit corneal keratocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been no effective treatment or agent that is available for corneal injury in promoting corneal wound healing. Previous studies on edible bird's nest extract (EBN) had reported the presence of hormone-like substance; avian epidermal growth factor that could stimulate cell division and enhance regeneration. This study aimed to investigate the effects of EBN on corneal keratocytes proliferative capacity and phenotypical changes.</p> <p>Methods</p> <p>Corneal keratocytes from six New Zealand White Rabbits were isolated and cultured until Passage 1. The proliferative effects of EBN on corneal keratocytes were determined by MTT assay in serum-containing medium (FDS) and serum-free medium (FD). Keratocytes phenotypical changes were morphologically assessed and gene expression of aldehyde dehydrogenase (ALDH), collagen type 1 and lumican were determined through RT-PCR.</p> <p>Results</p> <p>The highest cell proliferation was observed when both media were supplemented with 0.05% and 0.1% EBN. Cell proliferation was also consistently higher in FDS compared to FD. Both phase contrast micrographs and gene expression analysis confirmed the corneal keratocytes retained their phenotypes with the addition of EBN.</p> <p>Conclusions</p> <p>These results suggested that low concentration of EBN could synergistically induce cell proliferation, especially in serum-containing medium. This could be a novel breakthrough as both cell proliferation and functional maintenance are important during corneal wound healing. The in vitro test is considered as a crucial first step for nutri-pharmaceutical formation of EBN-based eye drops before in vivo application.</p

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference

    Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods <it>in vivo</it>. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS), a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP) as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model.</p> <p>Methods</p> <p>Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3) received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3) received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3), following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3) received fresh frozen ovine allografts with 500 μm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3) received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis.</p> <p>Results</p> <p>After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p < 0.001) in callus maturity and periosteal bridging across the host/allograft interfaces. Longitudinal perforations extending 10 mm into the proximal and distal endplates filled to varying degrees with new appositional bone and significantly accelerated revitalization of the allografts compared to controls.</p> <p>Conclusion</p> <p>The current study has demonstrated in a large animal model the potential of both LIPUS and LAP therapy to improve the degree of allograft incorporation. LAP may provide an option for increasing porosity, and thus potential <it>in vivo </it>osseous apposition and revitalization, without adversely affecting the structural integrity of the graft.</p

    Space Division Multiplexing in Optical Fibres

    Full text link
    Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fibre. In this search, researchers have explored (and close to maximally exploited) every available degree of freedom, and even commercial systems now utilize multiplexing in time, wavelength, polarization, and phase to speed more information through the fibre infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibres can easily support hundreds of spatial modes, but today's commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals.Comment: to appear in Nature Photonic

    Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.)

    Full text link
    [EN] Nerium oleander is an ornamental species of high aesthetic value, grown in arid and semi- arid regions because of its drought tolerance, which is also considered as relatively resistant to salt; yet the biochemical and molecular mechanisms underlying oleander¿s stress toler- ance remain largely unknown. To investigate these mechanisms, one-year-old oleander seedlings were exposed to 15 and 30 days of treatment with increasing salt concentratio ns, up to 800 mM NaCl, and to complete withholding of irrigation; growth parameters and bio- chemical markers characteristic of conserved stress-response pathways were then deter- mined in stressed and control plants. Strong water deficit and salt stress both caused inhibition of growth, degradation of photosynthetic pigments, a slight (but statistically signifi- cant) increase in the leaf levels of specific osmolytes, and induction of oxidative stress¿as indicated by the accumulation of malondialdehyde (MDA), a reliable oxidative stress marker ¿accompanied by increases in the levels of total phenolic compounds and antioxidant fla- vonoids and in the specific activities of ascorbate peroxidase (APX) and glutathione reduc- tase (GR). High salinity, in addition, induced accumulation of Na + and Cl - in roots and leaves and the activation of superoxide dismutase (SOD) and catalase (CAT) activities. Apart from anatomical adaptations that protect oleander from leaf dehydration at moderate levels of stress, our results indicate that tolerance of this species to salinity and water deficit is based on the constitutive accumulation in leaves of high concentratio ns of soluble carbohydrates and, to a lesser extent, of glycine betaine, and in the activation of the aforementioned antiox- idant systems. Moreover, regarding specifically salt stress, mechanisms efficiently blocking transport of toxic ions from the roots to the aerial parts of the plant appear to contribute to a large extent to tolerance in Nerium oleanderThis work was financed by internal funds of the Polytechnic University of Valencia to Monica Boscaiu and Oscar Vicente. Dinesh Kumar’s stay in Valencia was financed by a NAMASTE fellowship from the European Union, and Mohamad Al Hassan was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium).Kumar, D.; Al Hassan, M.; Naranjo Olivero, MA.; Agrawal, V.; Boscaiu, M.; Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE. 12(9). doi:10.1371/journal.pone.0185017Se018501712

    Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A

    Get PDF
    Despite the fact that more than 5000 safety-related studies have been published on bisphenol A (BPA), there seems to be no resolution of the apparently deadlocked controversy as to whether exposure of the general population to BPA causes adverse effects due to its estrogenicity. Therefore, the Advisory Committee of the German Society of Toxicology reviewed the background and cutting-edge topics of this BPA controversy. The current tolerable daily intake value (TDI) of 0.05 mg/kg body weight [bw]/day, derived by the European Food Safety Authority (EFSA), is mainly based on body weight changes in two- and three-generation studies in mice and rats. Recently, these studies and the derivation of the TDI have been criticized. After having carefully considered all arguments, the Committee had to conclude that the criticism was scientifically not justified; moreover, recently published additional data further support the reliability of the two-and three-generation studies demonstrating a lack of estrogen-dependent effects at and below doses on which the current TDI is based. A frequently discussed topic is whether doses below 5 mg/ kg bw/day may cause adverse health effects in laboratory animals. Meanwhile, it has become clear that positive results from some explorative studies have not been confirmed in subsequent studies with higher numbers of animals or a priori defined hypotheses. Particularly relevant are some recent studies with negative outcomes that addressed effects of BPA on the brain, behavior, and the prostate in rodents for extrapolation to the human situation. The Committee came to the conclusion that rodent data can well be used as a basis for human risk evaluation. Currently published conjectures that rats are insensitive to estrogens compared to humans can be refuted. Data from toxicokinetics studies show that the half-life of BPA in adult human subjects is less than 2 hours and BPA is completely recovered in urine as BPA-conjugates. Tissue deconjugation of BPA-glucuronide and -sulfate may occur. Because of the extremely low quantities, it is only of minor relevance for BPA toxicity. Biomonitoring studies have been used to estimate human BPA exposure and show that the daily intake of BPA is far below the TDI for the general population. Further topics addressed in this article include reasons why some studies on BPA are not reproducible; the relevance of oral versus non-oral exposure routes; the degree to which newborns are at higher systemic BPA exposure; increased BPA exposure by infusions in intensive care units; mechanisms of action other than estrogen receptor activation; and the current regulatory status in Europe, as well as in the USA, Canada, Japan, New Zealand, and Australia. Overall, the Committee concluded that the current TDI for BPA is adequately justified and that the available evidence indicates that BPA exposure represents no noteworthy risk to the health of the human population, including newborns and babies
    corecore