268 research outputs found

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table

    Prominent Bone Loss Mediated by RANKL and IL-17 Produced by CD4+ T Cells in TallyHo/JngJ Mice

    Get PDF
    Increasing evidence that decreased bone density and increased rates of bone fracture are associated with abnormal metabolic states such as hyperglycemia and insulin resistance indicates that diabetes is a risk factor for osteoporosis. In this study, we observed that TallyHo/JngJ (TH) mice, a polygenic model of type II diabetes, spontaneously developed bone deformities with osteoporotic features. Female and male TH mice significantly gained more body weight than control C57BL/6 mice upon aging. Interestingly, bone density was considerably decreased in male TH mice, which displayed hyperglycemia. The osteoblast-specific bone forming markers osteocalcin and osteoprotegerin were decreased in TH mice, whereas osteoclast-driven bone resorption markers such as IL-6 and RANKL were significantly elevated in the bone marrow and blood of TH mice. In addition, RANKL expression was prominently increased in CD4+ T cells of TH mice upon T cell receptor stimulation, which was in accordance with enhanced IL-17 production. IL-17 production in CD4+ T cells was directly promoted by treatment with leptin while IFN-γ production was not. Moreover, blockade of IFN-γ further increased RANKL expression and IL-17 production in TH-CD4+ T cells. In addition, the osteoporotic phenotype of TH mice was improved by treatment with alendronate. These results strongly indicate that increased leptin in TH mice may act in conjunction with IL-6 to preferentially stimulate IL-17 production in CD4+ T cells and induce RANKL-mediated osteoclastogenesis. Accordingly, we propose that TH mice could constitute a beneficial model for osteoporosis

    Circulating levels of dickkopf-1, osteoprotegerin and sclerostin are higher in old compared with young men and women and positively associated with whole-body bone mineral density in older adults

    Get PDF
    Summary: Bone mineral density declines with increasing older age. We examined the levels of circulating factors known to regulate bone metabolism in healthy young and older adults. The circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin were positively associated with WBMD in older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young. Purpose: To investigate the relationship between whole-body bone mineral density (WBMD) and levels of circulating factors with known roles in bone remodelling during 'healthy' ageing. Methods: WBMD and fasting plasma concentrations of dickkopf-1, fibroblast growth factor-23, osteocalcin, osteoprotegerin, osteopontin and sclerostin were measured in 272 older subjects (69 to 81 years; 52% female) and 171 younger subjects (18-30 years; 53% female). Results: WBMD was lower in old than young. Circulating osteocalcin was lower in old compared with young, while dickkopf-1, osteoprotegerin and sclerostin were higher in old compared with young. These circulating factors were each positively associated with WBMD in the older adults and the relationships remained after adjustment for covariates (r-values ranging from 0.174 to 0.254, all p<0.01). In multivariate regression, the body mass index, circulating sclerostin and whole-body lean mass together accounted for 13.8% of the variation with WBMD in the older adults. In young adults, dickkopf-1 and body mass index together accounted for 7.7% of variation in WBMD. Conclusion: Circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin are positively associated with WBMD in community-dwelling older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young

    A Freeze Frame View of Vesicular Stomatitis Virus Transcription Defines a Minimal Length of RNA for 5′ Processing

    Get PDF
    The RNA synthesis machinery of vesicular stomatitis virus (VSV) comprises the genomic RNA encapsidated by the viral nucleocapsid protein (N) and associated with the RNA dependent RNA polymerase, the viral components of which are a large protein (L) and an accessory phosphoprotein (P). The 241 kDa L protein contains all the enzymatic activities necessary for synthesis of the viral mRNAs, including capping, cap methylation and polyadenylation. Those RNA processing reactions are intimately coordinated with nucleotide polymerization such that failure to cap results in termination of transcription and failure to methylate can result in hyper polyadenylation. The mRNA processing reactions thus serve as a critical check point in viral RNA synthesis which may control the synthesis of incorrectly modified RNAs. Here, we report the length at which viral transcripts first gain access to the capping machinery during synthesis. By reconstitution of transcription in vitro with highly purified recombinant polymerase and engineered templates in which we omitted sites for incorporation of UTP, we found that transcripts that were 30-nucleotides in length were uncapped, whereas those that were 31-nucleotides in length contained a cap structure. The minimal RNA length required for mRNA cap addition was also sufficient for methylation since the 31-nucleotide long transcripts were methylated at both ribose-2′-O and guanine-N-7 positions. This work provides insights into the spatial relationship between the active sites for the RNA dependent RNA polymerase and polyribonucleotidyltransferase responsible for capping of the viral RNA. We combine the present findings with our recently described electron microscopic structure of the VSV polymerase and propose a model of how the spatial arrangement of the capping activities of L may influence nucleotide polymerization

    Rules Governing Selective Protein Carbonylation

    Get PDF
    BACKGROUND:Carbonyl derivatives are mainly formed by direct metal-catalysed oxidation (MCO) attacks on the amino-acid side chains of proline, arginine, lysine and threonine residues. For reasons unknown, only some proteins are prone to carbonylation. METHODOLOGY/PRINCIPAL FINDINGS:we used mass spectrometry analysis to identify carbonylated sites in: BSA that had undergone in vitro MCO, and 23 carbonylated proteins in Escherichia coli. The presence of a carbonylated site rendered the neighbouring carbonylatable site more prone to carbonylation. Most carbonylated sites were present within hot spots of carbonylation. These observations led us to suggest rules for identifying sites more prone to carbonylation. We used these rules to design an in silico model (available at http://www.lcb.cnrs-mrs.fr/CSPD/), allowing an effective and accurate prediction of sites and of proteins more prone to carbonylation in the E. coli proteome. CONCLUSIONS/SIGNIFICANCE:We observed that proteins evolve to either selectively maintain or lose predicted hot spots of carbonylation depending on their biological function. As our predictive model also allows efficient detection of carbonylated proteins in Bacillus subtilis, we believe that our model may be extended to direct MCO attacks in all organisms

    Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While an increase in bone marrow adiposity is associated with age-related bone disease, the function of bone marrow adipocytes has not been studied. The aim of this study was to characterize and compare the age-related gene expression profiles in bone marrow adipocytes and epididymal adipocytes.</p> <p>Results</p> <p>A total of 3918 (13.7%) genes were differentially expressed in bone marrow adipocytes compared to epididymal adipocytes. Bone marrow adipocytes revealed a distinct gene profile with low expression of adipocyte-specific genes peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid binding protein 4 (FABP4), perilipin (Plin1), adipsin (CFD) and high expression of genes associated with early adipocyte differentiation (CCAAT/enhancer binding protein beta (C/EBPβ), regulator of G-protein signaling 2 (RGS2). In addition, a number of genes including secreted frizzled related protein 4 (SFRP4), tumor necrosis factor α (TNFα), transforming growth factor beta 1(TGFβ1), G-protein coupled receptor 109A (GPR109A) and interleukin 6 (IL-6), that could affect adipose-derived signaling to bone are markedly increased in bone marrow adipocytes. Age had a substantial effect on genes associated with mitochondria function and inflammation in bone marrow adipocytes. Twenty seven genes were significantly changed with age in both adipocyte depots. Among these genes, IL6 and GPR109A were significantly reduced with age in both adipocyte depots.</p> <p>Conclusions</p> <p>Overall, gene profiling reveals a unique phenotype for primary bone marrow adipocytes characterized by low adipose-specific gene expression and high expression of inflammatory response genes. Bone marrow and epididymal adipocytes share a common pathway in response to aging in mice, but age has a greater impact on global gene expression in epididymal than in bone marrow adipocytes. Genes that are differentially expressed at greater levels in the bone marrow are highly regulated with age.</p
    corecore