274 research outputs found

    The Effect of Pre-Injury Anti-Platelet Therapy on the Development of Complications in Isolated Blunt Chest Wall Trauma: A Retrospective Study

    Get PDF
    INTRODUCTION: The difficulties in the management of the blunt chest wall trauma patient in the Emergency Department due to the development of late complications are well recognised in the literature. Pre-injury anti-platelet therapy has been previously investigated as a risk factor for poor outcomes following traumatic head injury, but not in the blunt chest wall trauma patient cohort. The aim of this study was to investigate pre-injury anti-platelet therapy as a risk factor for the development of complications in the recovery phase following blunt chest wall trauma. METHODS: A retrospective study was completed in which the medical notes were analysed of all blunt chest wall trauma patients presenting to a large trauma centre in Wales in 2012 and 2013. Using univariate and multivariable logistic regression analysis, pre-injury platelet therapy was investigated as a risk factor for the development of complications following blunt chest wall trauma. Previously identified risk factors were included in the analysis to address the influence of confounding. RESULTS: A total of 1303 isolated blunt chest wall trauma patients presented to the ED in Morriston Hospital in 2012 and 2013 with complications recorded in 144 patients (11%). On multi-variable analysis, pre-injury anti-platelet therapy was found to be a significant risk factor for the development of complications following isolated blunt chest wall trauma (odds ratio: 16.9; 95% confidence intervals: 8.2-35.2). As in previous studies patient age, number of rib fractures, chronic lung disease and pre-injury anti-coagulant use were also found to be significant risk factors. CONCLUSIONS: Pre-injury anti-platelet therapy is being increasingly used as a first line treatment for a number of conditions and there is a concurrent increase in trauma in the elderly population. Pre-injury anti-platelet therapy should be considered as a risk factor for the development of complications by clinicians managing blunt chest wall trauma

    Gauge symmetry and W-algebra in higher derivative systems

    Full text link
    The problem of gauge symmetry in higher derivative Lagrangian systems is discussed from a Hamiltonian point of view. The number of independent gauge parameters is shown to be in general {\it{less}} than the number of independent primary first class constraints, thereby distinguishing it from conventional first order systems. Different models have been considered as illustrative examples. In particular we show a direct connection between the gauge symmetry and the W-algebra for the rigid relativistic particle.Comment: 1+22 pages, 1 figure, LaTeX, v2; title changed, considerably expanded version with new results, to appear in JHE

    Water quality and planktonic microbial assemblages of isolated wetlands in an agricultural landscape

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Wetlands 31 (2011): 885-894, doi:10.1007/s13157-011-0203-6.Wetlands provide ecosystem services including flood protection, water quality enhancement, food chain support, carbon sequestration, and support regional biodiversity. Wetlands occur in human-altered landscapes, and the ongoing ability of these wetlands to provide ecosystem services is lacking. Additionally, the apparent lack of connection of some wetlands, termed geographically isolated, to permanent waters has resulted in little regulatory recognition. We examined the influence of intensive agriculture on water quality and planktonic microbial assemblages of intermittently inundated wetlands. We sampled 10 reference and 10 agriculturally altered wetlands in the Gulf Coastal Plain of Georgia. Water quality measures included pH, alkalinity, dissolved organic carbon, nutrients (nitrate, ammonium, and phosphate), and filterable solids (dry mass and ash-free dry mass). We measured abundance and relative size distribution of the planktonic microbial assemblage (< 45 μm) using flow cytometry. Water quality in agricultural wetlands was characterized by elevated nutrients, pH, and suspended solids. Autotrophic microbial cells were largely absent from both wetland types. Heterotrophic microbial abundance was influenced by nutrients and suspended matter concentration. Agriculture caused changes in microbial assemblages forming the base of wetland food webs. Yet, these wetlands potentially support important ecological services in a highly altered landscape.Funding was provided by the Joseph W. Jones Ecological Research Center.2012-07-2

    Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.

    Get PDF
    Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P &lt; 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk

    Honokiol Induces Calpain-Mediated Glucose-Regulated Protein-94 Cleavage and Apoptosis in Human Gastric Cancer Cells and Reduces Tumor Growth

    Get PDF
    Background. Honokiol, a small molecular weight natural product, has been shown to possess potent anti-neoplastic and anti-angiogenic properties. Its molecular mechanisms and the ability of anti-gastric cancer remain unknown. It has been shown that the anti-apoptotic function of the glucose-regulated proteins (GRPs) predicts that their induction in neoplastic cells can lead to cancer progression and drug resistance. We explored the effects of honokiol on the regulation of GRPs and apoptosis in human gastric cancer cells and tumor growth. Methodology and Principal Findings. Treatment of various human gastric cancer cells with honokiol led to the induction of GRP94 cleavage, but did not affect GRP78. Silencing of GRP94 by small interfering RNA (siRNA) could induce cell apoptosis. Treatment of cells with honokiol or chemotherapeutics agent etoposide enhanced the increase in apoptosis and GRP94 degradation. The calpain activity and calpain-II (m-calpain) protein (but not calpain-I (mu-calpain)) level could also be increased by honokiol. Honokiol-induced GRP94 down-regulation and apoptosis in gastric cancer cells could be reversed by siRNA targeting calpain-II and calpain inhibitors. Furthermore, the results of immunofluorescence staining and immunoprecipitation revealed a specific interaction of GRP94 with calpain-II in cells following honokiol treatment. We next observed that tumor GRP94 over-expression and tumor growth in BALB/c nude mice, which were inoculated with human gastric cancer cells MKN45, are markedly decreased by honokiol treatment. Conclusions and Significance. These results provide the first evidence that honokiol-induced calpain-II-mediated GRP94 cleavage causes human gastric cancer cell apoptosis. We further suggest that honokiol may be a possible therapeutic agent to improve clinical outcome of gastric cancer

    Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data

    Get PDF
    Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an external signal. The model provides the basis of an experimental method to determine the architecture of such pathways, and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ∼80% of the known relationships without any false positives

    An epistatic mini-circuitry between the transcription factors Snail and HNF4\uce\ub1 controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs

    Get PDF
    Preservation of the epithelial state involves the stable repression of epithelial-to-mesenchymal transition program, whereas maintenance of the stem compartment requires the inhibition of differentiation processes. A simple and direct molecular mini-circuitry between master elements of these biological processes might provide the best device to keep balanced such complex phenomena. In this work, we show that in hepatic stem cell Snail, a transcriptional repressor of the hepatocyte differentiation master gene HNF4\uce\ub1, directly represses the expression of the epithelial microRNAs (miRs)-200c and-34a, which in turn target several stem cell genes. Notably, in differentiated hepatocytes HNF4\uce\ub1, previously identified as a transcriptional repressor of Snail, induces the miRs-34a and-200a, b, c that, when silenced, causes epithelial dedifferentiation and reacquisition of stem traits. Altogether these data unveiled Snail, HNF4\uce\ub1 and miRs-200a, b, c and-34a as epistatic elements controlling hepatic stem cell maintenance/differentiation. \uc2\ua9 2012 Macmillan Publishers Limited. All rights reserved

    Biological Process Linkage Networks

    Get PDF
    BACKGROUND. The traditional approach to studying complex biological networks is based on the identification of interactions between internal components of signaling or metabolic pathways. By comparison, little is known about interactions between higher order biological systems, such as biological pathways and processes. We propose a methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions, transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes and the resultant network of biological processes, the Process Linkage Network (PLN). RESULTS. We construct, catalogue, and analyze different types of PLNs derived from different data sources and different species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-independent. As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into prediction methods. CONCLUSIONS. Our approach constitutes a promising new direction towards understanding the higher levels of organization of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which proteins are involved in specific biological processes.Lynn and William Frankel Center for Computer Science; the Paul Ivanier center for robotics research and production; National Science Foundation (ITR-048715); National Human Genome Research Institute (1R33HG002850-01A1, R01 HG003367-01A1); National Institute of Health (U54 LM008748

    A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization

    Get PDF
    Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato

    Attaching and effacing (A/E) lesion formation by enteropathogenic E. coli on human intestinal mucosa is dependent on non-LEE effectors

    Get PDF
    Enteropathogenic E. coli (EPEC) is a human pathogen that causes acute and chronic pediatric diarrhea. The hallmark of EPEC infection is the formation of attaching and effacing (A/E) lesions in the intestinal epithelium. Formation of A/E lesions is mediated by genes located on the pathogenicity island locus of enterocyte effacement (LEE), which encode the adhesin intimin, a type III secretion system (T3SS) and six effectors, including the essential translocated intimin receptor (Tir). Seventeen additional effectors are encoded by genes located outside the LEE, in insertion elements and prophages. Here, using a stepwise approach, we generated an EPEC mutant lacking the entire effector genes (EPEC0) and intermediate mutants. We show that EPEC0 contains a functional T3SS. An EPEC mutant expressing intimin but lacking all the LEE effectors but Tir (EPEC1) was able to trigger robust actin polymerization in HeLa cells and mucin-producing intestinal LS174T cells. However, EPEC1 was unable to form A/E lesions on human intestinal in vitro organ cultures (IVOC). Screening the intermediate mutants for genes involved in A/E lesion formation on IVOC revealed that strains lacking non-LEE effector/s have a marginal ability to form A/E lesions. Furthermore, we found that Efa1/LifA proteins are important for A/E lesion formation efficiency in EPEC strains lacking multiple effectors. Taken together, these results demonstrate the intricate relationships between T3SS effectors and the essential role non-LEE effectors play in A/E lesion formation on mucosal surfaces
    corecore