640 research outputs found

    Breeding with resistant rams leads to rapid control of classical scrapie in affected sheep flocks

    Get PDF
    Susceptibility to scrapie, a transmissible spongiform encephalopathy in sheep, is modulated by the genetic make-up of the sheep. Scrapie control policies, based on selecting animals of resistant genotype for breeding, have recently been adopted by the Netherlands and other European countries. Here we assess the effectiveness of a breeding programme based on selecting rams of resistant genotype to obtain outbreak control in classical scrapie-affected sheep flocks under field conditions. In six commercially-run flocks following this breeding strategy, we used genotyping to monitor the genotype distribution, and tonsil biopsies and post-mortem analyses to monitor the occurrence of scrapie infection. The farmers were not informed about the monitoring results until the end of the study period of six years. We used a mathematical model of scrapie transmission to analyze the monitoring data and found that where the breeding scheme was consistently applied, outbreak control was obtained after at most four years. Our results also show that classical scrapie control can be obtained before the frequency of non-resistant animals is reduced to zero in the flock. This suggests that control at the national scale can be obtained without a loss of genetic polymorphisms from any of the sheep breeds

    Pharmacogenomic insights into treatment and management of statin-induced myopathy

    Get PDF
    Although statins are generally well tolerated, the most common adverse drug reaction from statin therapy is myopathy. This article reviews the current pharmacogenomic knowledge of statin-induced myopathy. Furthermore, we will discuss the importance of recent pharmacogenetic advances for the treatment and management of statin-induced myopathy. Variation in the SLCO1B1 gene is associated with increased incidence of statin-induced myopathy, particularly with simvastatin and less so with other statins. If different pharmacokinetic enzymes and transporters are responsible for susceptibility to myopathy, this may explain differences in the occurrence of statin-induced myopathy in individual patients. Genotyping in patients suffering from statin-induced myopathy may help to personalize the choice of statin for the lowest chance of developing myopathy

    Shifts in growth strategies reflect tradeoffs in cellular economics

    Get PDF
    The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies

    Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci

    Get PDF
    Background - A-gliadins form a multigene protein family encoded by multiple ¿-gliadin (Gli-2) genes at three genomic loci, Gli-A2, Gli-B2 and Gli-D2, respectively located on the homoeologous wheat chromosomes 6AS, 6BS, and 6DS. These proteins contain a number of important celiac disease (CD)-immunogenic domains. The ¿-gliadins expressed from the Gli-B2 locus harbour fewer conserved CD-epitopes than those from Gli-A2, whereas the Gli-D2 gliadins have the highest CD-immunogenic potential. In order to detect differences in the highly CD-immunogenic ¿-gliadin fraction we determined the relative expression level from the homoeologous Gli-2 loci in various tetraploid and hexaploid wheat genotypes by using a quantitative pyrosequencing method and by analyzing expressed sequence tag (EST) sequences. Results - We detected large differences in relative expression levels of ¿-gliadin genes from the three homoeologous loci among wheat genotypes, both as relative numbers of expressed sequence tag (EST) sequences from specific varieties and when using a quantitative pyrosequencing assay specific for Gli-A2 genes. The relative Gli-A2 expression level in a tetraploid durum wheat cultivar ('Probstdorfer Pandur') was 41%. In genotypes derived from landraces, the Gli-A2 frequency varied between 12% and 58%. In some advanced hexaploid bread wheat cultivars the genes from locus Gli-B2 were hardly expressed (e.g., less than 5% in 'Lavett') but in others they made up more than 40% (e.g., in 'Baldus'). Conclusion - Here, we have shown that large differences exist in relative expression levels of ¿-gliadins from the homoeologous Gli-2 loci among wheat genotypes. Since the homoelogous genes differ in the amount of conserved CD-epitopes, screening for differential expression from the homoeologous Gli-2 loci can be employed for the pre-selection of wheat varieties in the search for varieties with very low CD-immunogenic potential. Pyrosequencing is a method that can be employed for such a 'gene family-specific quantitative transcriptome profiling

    Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.)

    Get PDF
    The microbes in the gastrointestinal (GI) tract are of high importance for the health of the host. In this study, Roche 454 pyrosequencing was applied to a pooled set of different 16S rRNA gene amplicons obtained from GI content of common carp (Cyprinus carpio) to make an inventory of the diversity of the microbiota in the GI tract. Compared to other studies, our culture-independent investigation reveals an impressive diversity of the microbial flora of the carp GI tract. The major group of obtained sequences belonged to the phylum Fusobacteria. Bacteroidetes, Planctomycetes and Gammaproteobacteria were other well represented groups of micro-organisms. Verrucomicrobiae, Clostridia and Bacilli (the latter two belonging to the phylum Firmicutes) had fewer representatives among the analyzed sequences. Many of these bacteria might be of high physiological relevance for carp as these groups have been implicated in vitamin production, nitrogen cycling and (cellulose) fermentation

    Subcortical brain volumes, cortical thickness and cortical surface area in families genetically enriched for social anxiety disorder - a multiplex multigenerational neuroimaging study

    Get PDF
    Background Social anxiety disorder (SAD) is a disabling psychiatric condition with a genetic background. Brain alterations in gray matter (GM) related to SAD have been previously reported, but it remains to be elucidated whether GM measures are candidate endophenotypes of SAD. Endophenotypes are measurable characteristics on the causal pathway from genotype to phenotype, providing insight in genetically-based disease mechanisms. Based on a review of existing evidence, we examined whether GM characteristics meet two endophenotype criteria, using data from a unique sample of SAD-patients and their family-members of two generations. First, we investigated whether GM characteristics co-segregate with social anxiety within families genetically enriched for SAD. Secondly, heritability of the GM characteristics was estimated. Methods Families with a genetic predisposition for SAD participated in the Leiden Family Lab study on SAD; T1-weighted MRI brain scans were acquired (n = 110, 8 families). Subcortical volumes, cortical thickness and cortical surface area were determined for a-priori determined regions of interest (ROIs). Next, associations with social anxiety and heritabilities were estimated. Findings Several subcortical and cortical GM characteristics, derived from frontal, parietal and temporal ROIs, co-segregated with social anxiety within families (uncorrected p-level) and showed moderate to high heritability. Interpretation These findings provide preliminary evidence that GM characteristics of multiple ROIs, which are distributed over the brain, are candidate endophenotypes of SAD. Thereby, they shed light on the genetic vulnerability for SAD. Future research is needed to confirm these results and to link them to functional brain alterations and to genetic variations underlying these GM changes

    Proximal tibiofibular synostosis as a possible cause of a pseudoradicular syndrome: a case report

    Get PDF
    This paper presents a case report of persistent low back pain and suspected lumbar radiculopathy. A synostosis at the level of the proximal tibiofibular joint was diagnosed. After successful resection of the synostosis, the low back symptoms resolved completely. This is the first report of a proximal tibiofibular synostosis as a possible cause of referred pain proximally

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund
    corecore