161 research outputs found
Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.
Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form
Multicenter study of the natural history and therapeutic responses of patients with chikungunya, focusing on acute and chronic musculoskeletal manifestations - a study protocol from the clinical and applied research in Chikungunya (REPLICK network)
BACKGROUND: Chikungunya is associated with high morbidity and the natural history of symptomatic infection has been divided into three phases (acute, post-acute, and chronic) according to the duration of musculoskeletal symptoms. Although this classification has been designed to help guide therapeutic decisions, it does not encompass the complexity of the clinical expression of the disease and does not assist in the evaluation of the prognosis of severity nor chronic disease. Thus, the current challenge is to identify and diagnose musculoskeletal disorders and to provide the optimal treatment in order to prevent perpetuation or progression to a potentially destructive disease course. METHODS: The study is the first product of the Clinical and Applied Research Network in Chikungunya (REPLICK). This is a prospective, outpatient department-based, multicenter cohort study in Brazil. Four work packages were defined: i. Clinical research; ii) Translational Science - comprising immunology and virology streams; iii) Epidemiology and Economics; iv) Therapeutic Response and clinical trials design. Scheduled appointments on days 21 (D21) ± 7 after enrollment, D90 ± 15, D120 ± 30, D180 ± 30; D360 ± 30; D720 ± 60, and D1080 ± 60 days. On these visits a panel of blood tests are collected in addition to the clinical report forms to obtain data on socio-demographic, medical history, physical examination and questionnaires devoted to the evaluation of musculoskeletal manifestations and overall health are performed. Participants are asked to consent for their specimens to be maintained in a biobank. Aliquots of blood, serum, saliva, PAXgene, and when clinically indicated to be examined, synovial fluid, are stored at -80° C. The study protocol was submitted and approved to the National IRB and local IRB at each study site. DISCUSSION: Standardized and harmonized patient cohorts are needed to provide better estimates of chronic arthralgia development, the clinical spectra of acute and chronic disease and investigation of associated risk factors. This study is the largest evaluation of the long-term sequelae of individuals infected with CHIKV in the Brazilian population focusing on musculoskeletal manifestations, mental health, quality of life, and chronic pain. This information will both define disease burden and costs associated with CHIKV infection, and better inform therapeutic guidelines
The inventory of geological heritage of the state of SĂŁo Paulo, Brazil: Methodological basis, results and perspectives
An inventory of geological sites based on solid and clear criteria is a first step for any geoconservation strategy. This paper describes the method used in the geoheritage inventory of the State of SĂŁo Paulo, Brazil, and presents its main results. This inventory developed by the geoscientific community aimed to identify geosites with scientific value in the whole state, using a systematic approach. All 142 geosites representative of 11 geological frameworks were characterised and quantitatively evaluated according to their scientific value and risk of degradation, in order to establish priorities for their future management. An online database of the inventory is under construction, which will be available to be easily consulted and updated by the geoscientific community. All data were made available to the State Geological Institute as the backbone for the implementation of a future state geoconservation strategy.The authors acknowledge the Science Without Borders Programme, Process 075/2012, which supported this study and the SĂŁo Paulo Research Foundation (FAPESP), Process 2011/17261-6. We also thanks C. Mazoca for his help with maps and figures.info:eu-repo/semantics/acceptedVersio
A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in Deinococcus radiodurans
In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA
Photodynamic therapy associated with full-mouth ultrasonic debridement in the treatment of severe chronic periodontitis: a randomized-controlled clinical trial
BACKGROUND: Photodynamic therapy (PDT) is a method of microbial reduction which can benefit periodontal treatment in areas of difficult access, such as deep pockets and furcations. The aim of this randomized controlled clinical trial was to evaluate the effects of PDT as an adjunct to full-mouth ultrasonic debridement in the treatment of severe chronic periodontitis. MATERIAL AND METHODS: Twenty-two patients with at least one pocket with a probing depth (PD) of ≥7 mm and one pocket with a PD of ≥5 mm and bleeding on probing (BOP) on each side of the mouth were included, characterizing a split mouth design. The control group underwent full-mouth ultrasonic debridement and the test group received the same treatment associated with PDT. The PDT was performed on only one side of the mouth and the initial step consisted of subgingival irrigation with 0.005% methylene blue dye. Two minutes after applying the photosensitizer, the low power laser - AsGaAl (Photon Lase III - PL7336, DMC, São Carlos -São Paulo, Brazil) was applied (660 nm, 100 mW, 9 J, 90 seconds per site, 320 J/cm(2), diameter tip 600 µm).The following clinical parameters were evaluated: plaque index, gingival index, BOP, gingival recession (GR), PD, and clinical attachment level (CAL). All parameters were collected before, 1, 3 and 6 months after treatment. RESULTS: An improvement in BOP, PD and CAL was observed after treatment, in both groups, but without any difference between them. After 6 months, the PD decreased from 5.11±0.56 mm to 2.83±0.47 mm in the test group (p<0.05) and from 5.15±0.46 mm to 2.83±0.40 mm in the control group (p<0.05). The CAL changed, after 6 months, from 5.49±0.76 mm to 3.41±0.84 mm in the test group (p<0.05) and from 5.53±0.54 to 3.39±0.51 mm in the control group (p<0.05). CONCLUSION: Both approaches resulted in significant clinical improvements in the treatment of severe chronic periodontits, however, the PDT did not provide any additional benefit to those obtained with full-mouth ultrasonic debridement used alone
Enhanced snoMEN Vectors Facilitate Establishment of GFP–HIF-1α Protein Replacement Human Cell Lines
The snoMEN (snoRNA Modulator of gene ExpressioN) vector technology was developed from a human box C/D snoRNA, HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets, allowing knock-down of targeted genes. Here we have screened additional human nucleolar snoRNAs and assessed their application for gene specific knock-downs to improve the efficiency of snoMEN vectors. We identify and characterise a new snoMEN vector, termed 47snoMEN, that is derived from box C/D snoRNA U47, demonstrating its use for knock-down of both endogenous cellular proteins and G/YFP-fusion proteins. Using multiplex 47snoMEM vectors that co-express multiple 47snoMEN in a single transcript, each of which can target different sites in the same mRNA, we document >3-fold increase in knock-down efficiency when compared with the original HBII-180C based snoMEN. The multiplex 47snoMEM vector allowed the construction of human protein replacement cell lines with improved efficiency, including the establishment of novel GFP–HIF-1α replacement cells. Quantitative mass spectrometry analysis confirmed the enhanced efficiency and specificity of protein replacement using the 47snoMEN-PR vectors. The 47snoMEN vectors expand the potential applications for snoMEN technology in gene expression studies, target validation and gene therapy
- …