631 research outputs found

    The association between nutrition and physical activity knowledge and weight status of primary school educators

    Get PDF
    The purpose of this study was to investigate primary school educators’ health status, knowledge, perceptions and behaviour regarding nutrition and physical activity.Thus, nutrition and physical activity knowledge, attitudes,  behaviour and risk factors for the development of non-communicable diseases of 155 educators were assessed in a  cross-sectional survey. Height, weight, waist circumference, blood pressure and random glucose levels were  measured. Twenty percent of the sample had normal weight (body mass index (BMI, kg/m²) &lt; 25), 27.7% were  overweight (BMI 25 to < 30) and 52.3% were obese (BMI < 30). Most of the participants were younger than 45  years (54.2%), females 78.1%, resided in urban areas (50.3%), with high blood pressure ( 140/90 mmHg:  50.3%), and were inactive (48.7%) with a high waist circumference (&gt; 82 cm: 57.4%). Educators’ nutrition and  physical activity knowledge was poor. Sixty-nine percent of educators incorrectly believed that eating starchy foods  causes weight gain and only 15% knew that one should eat five or more fruit and/or vegetables per day. Aspects of poor nutritional knowledge, misconceptions regarding actual body weight status, and challenges in changing health behaviours, emerged as issues which need to be addressed among educators. Educators’ high risk for developing chronic non-communicable diseases (NCDs) may impact on educator absenteeism and subsequently on school  functioning. The aspects of poor nutrition and physical activity knowledge along with educators’ high risk for NCD development may be particularly significant not merely in relation to their personal health but also the learners they teach.Keywords: body weight, educators, health, knowledge, non-communicable diseases, nutrition, perceptions, physical activity, primary schools, risk factor

    A survey of Salmonella spp and Campylobacter spp in dairy goat faeces and bulk tank milk in the Murcia region of Spain

    Get PDF
    This study was designed to investigate the occurrence of Salmonella spp and Campylobacter spp in faeces samples from 222 healthy Murciano-Granadina dairy goats reared on 12 farms in Spain and in samples of bulk tank milk from 11 of those herds. Neither Salmonella spp nor Campylobacter spp were isolated from any of the samples. Our results suggest that, under the management practices applied to this breed in Spain, Murciano-Granadina goats are not likely to be a significant reservoir for these food-borne pathogens

    [89Zr]Oxinate4 for long-term in vivo cell tracking by positron emission tomography

    Get PDF
    Purpose 111In (typically as [111In]oxinate3) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an 89Zr PET tracer for cell labelling and compare it with [111In]oxinate3 single photon emission computed tomography (SPECT). Methods [89Zr]Oxinate4 was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [89Zr]oxinate4 or [111In]oxinate3 was monitored for up to 14 days. 89Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. Results Zr labelling was effective in all cell types with yields comparable with 111In labelling. Retention of 89Zr in cells in vitro after 24 h was significantly better (range 71 to >90 %) than 111In (43–52 %). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with 111In or 89Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for 111In. In liver, spleen and bone marrow at least 92 % of 89Zr remained associated with eGFP-positive cells after 7 days in vivo. Conclusion [89Zr]Oxinate4 offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types

    Random walk with barriers: Diffusion restricted by permeable membranes

    Full text link
    Restrictions to molecular motion by barriers (membranes) are ubiquitous in biological tissues, porous media and composite materials. A major challenge is to characterize the microstructure of a material or an organism nondestructively using a bulk transport measurement. Here we demonstrate how the long-range structural correlations introduced by permeable membranes give rise to distinct features of transport. We consider Brownian motion restricted by randomly placed and oriented permeable membranes and focus on the disorder-averaged diffusion propagator using a scattering approach. The renormalization group solution reveals a scaling behavior of the diffusion coefficient for large times, with a characteristically slow inverse square root time dependence. The predicted time dependence of the diffusion coefficient agrees well with Monte Carlo simulations in two dimensions. Our results can be used to identify permeable membranes as restrictions to transport in disordered materials and in biological tissues, and to quantify their permeability and surface area.Comment: 8 pages, 3 figures; origin of dispersion clarified, refs adde

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Widespread sensorimotor and frontal cortical atrophy in Amyotrophic Lateral Sclerosis

    Get PDF
    BACKGROUND: Widespread cortical atrophy in Amyotrophic Lateral Sclerosis (ALS) has been described in neuropathological studies. The presence of cortical atrophy in conventional and scientific neuroimaging has been a matter of debate. In studies using computertomography, positron emission tomography, proton magnetic resonance spectroscopy and conventional T2-weighted and proton-weighted images, results have been variable. Recent morphometric studies by magnetic resonance imaging have produced conflicting results regarding the extent of grey and white matter involvement in ALS patients. METHODS: The authors used optimized voxel-based morphometry as an unbiased whole brain approach to detect differences between regional grey and white matter volumes. Seventeen patients with a diagnosis of ALS according to El-Escorial criteria and seventeen age-matched controls received a high resolution anatomical T1 scan. RESULTS: In ALS patients regional grey matter volume (GMV) reductions were found in the pre- and postcentral gyrus bilaterally which extended to premotor, parietal and frontal regions bilaterally compared with controls (p < 0.05, corrected for the entire volume). The revised ALS functional rating scale showed a positive correlation with GMV reduction of the right medial frontal gyrus corresponding to the dorsolateral prefrontal cortex. No significant differences were found for white matter volumes or when grey and white matter density images were investigated. There were no further correlations with clinical variables found. CONCLUSION: In ALS patients, primary sensorimotor cortex atrophy can be regarded as a prominent feature of the disease. Supporting the concept of ALS being a multisytem disorder, our study provides further evidence for extramotor involvement which is widespread. The lack of correlation with common clinical variables probably reflects the fact that heterogeneous disease processes underlie ALS. The discrepancy within all published morphometric studies in ALS so far may be related to differences in patient cohorts and several methodological factors of the data analysis process. Longitudinal studies are required to further clarify the time course and distribution of grey and white matter pathology during the course of ALS

    Holographic Conductivity in Disordered Systems

    Full text link
    The main purpose of this paper is to holographically study the behavior of conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane systems in AdS/CFT with random closed string and open string background fields. We give a prescription of calculating the DC conductivity holographically in disordered systems. In particular, we find an analytical formula of the conductivity in the presence of codimension one randomness. We also systematically study the AC conductivity in various probe brane setups without disorder and find analogues of Mott insulators.Comment: 43 pages, 28 figures, latex, references added, minor correction

    Quasi-Normal Modes of Stars and Black Holes

    Get PDF
    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in Relativity

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases
    • …
    corecore