1,170 research outputs found

    Means and covariance functions for geostatistical compositional data: an axiomatic approach

    Full text link
    This work focuses on the characterization of the central tendency of a sample of compositional data. It provides new results about theoretical properties of means and covariance functions for compositional data, with an axiomatic perspective. Original results that shed new light on the geostatistical modeling of compositional data are presented. As a first result, it is shown that the weighted arithmetic mean is the only central tendency characteristic satisfying a small set of axioms, namely continuity, reflexivity and marginal stability. Moreover, this set of axioms also implies that the weights must be identical for all parts of the composition. This result has deep consequences on the spatial multivariate covariance modeling of compositional data. In a geostatistical setting, it is shown as a second result that the proportional model of covariance functions (i.e., the product of a covariance matrix and a single correlation function) is the only model that provides identical kriging weights for all components of the compositional data. As a consequence of these two results, the proportional model of covariance function is the only covariance model compatible with reflexivity and marginal stability

    The increase of the functional entropy of the human brain with age

    Get PDF
    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy

    Managing water scarcity at a river basin scale with economic instruments

    Get PDF
    This paper presents a conceptual framework for both assessing the role of economic instruments, and reshaping them in order to enhance their contribution to the goals of managing water scarcity. Water management problems stem from the mismatch between a multitude of individual decisions, on the one hand, and the current and projected status of water resources on the other. Economics can provide valuable incentives that drive individual decisions, and can design efficient instruments to address water governance problems in a context of conflicting interests and relevant transaction costs. Yet, instruments such as water pricing or trading are mostly based on general principles of welfare economics that are not readily applicable to assets as complex as water. A flaw in welfare economic approaches lies in the presumption that economic instruments may be good orbad on their own (e.g., finding the "right" price). This vision changes radically when we focus on the problem, instead of the instrument. In this paper, we examine how economic instruments to achieve welfare-enhancing water resource outcomes can realize their full potential in basin-scale management contexts. We follow a political economy perspective that views conflicts between public and private interest as the main instrumental challenge of water management. Our analysis allows us to better understand the critical importance of economic instruments for reconciling individual actions towards collective ambitions of water efficiency, equity and sustainability with lessons for later-adopting jurisdictions. Rather than providing panaceas, the successful design and implementation of economic instruments as key river basin management arrangements involves high transaction costs, wide institutional changes and collective action at different levels

    A Platform for Site‐Specific DNA‐Antibody Bioconjugation by Using Benzoylacrylic‐Labelled Oligonucleotides

    Get PDF
    Many bioconjugation strategies for DNA oligonucleotides and antibodies suffer limitations, such as site-specificity, stoichiometry and hydrolytic instability of the conjugates, which makes them unsuitable for biological applications. Here, we report a new platform for the preparation of DNA-antibody bioconjugates with a simple benzoylacrylic acid pentafluorophenyl ester reagent. Benzoylacrylic-labelled oligonucleotides prepared with this reagent can be site-specifically conjugated to a range of proteins and antibodies through accessible cysteine residues. The homogeneity of the prepared DNA-antibody bioconjugates was confirmed by a new LC-MS protocol and the bioconjugate probes were used in fluorescence or super-resolution microscopy cell imaging experiments. This work demonstrates the versatility and robustness of our bioconjugation protocol that gives site-specific, well-defined and plasma-stable DNA-antibody bioconjugates for biological applications

    RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes

    Get PDF
    Many standardised durability testing methods have been developed for Portland cement-based concretes, but require validation to determine whether they are also applicable to alkali-activated materials. To address this question, RILEM TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ carried out round robin testing of carbonation and chloride penetration test methods, applied to five different alkali-activated concretes based on fly ash, blast furnace slag or metakaolin. The methods appeared overall to demonstrate an intrinsic precision comparable to their precision when applied to conventional concretes. The ranking of test outcomes for pairs of concretes of similar binder chemistry was satisfactory, but rankings were not always reliable when comparing alkali-activated concretes based on different precursors. Accelerated carbonation testing gave similar results for fly ash-based and blast furnace slag-based alkali-activated concretes, whereas natural carbonation testing did not. Carbonation of concrete specimens was observed to have occurred already during curing, which has implications for extrapolation of carbonation testing results to longer service life periods. Accelerated chloride penetration testing according to NT BUILD 443 ranked the tested concretes consistently, while this was not the case for the rapid chloride migration test. Both of these chloride penetration testing methods exhibited comparatively low precision when applied to blast furnace slag-based concretes which are more resistant to chloride ingress than the other materials tested

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Just when you thought it was safe to go into the membrane: the growing complexities of extra-nuclear progesterone signaling

    Get PDF
    The diversity of membrane-initiated progesterone actions has made characterization and establishment of its biological importance a complicated endeavor. A new study by Zuo and colleagues shows that progesterone via endogenous membrane progesterone receptor-α acts as a negative regulator of proliferation and epithelial to mesenchymal transition in a breast cancer cell line. These progesterone-mediated actions appear to be regulated through epidermal growth factor receptor and phosphatidylinositol 3-kinase signaling localized in caveolae. Moreover, the study shows expression of membrane progesterone receptor-α in benign and malignant breast cancer tissues. These data bring forth novel concepts with regard to progesterone actions in the breast; however, further work is warranted to fully characterize the physiologic actions of extra-nuclear progesterone signaling in the breast

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition

    Association between serum keptin concentrations and insulin resistance: A population-based study from China

    Get PDF
    BACKGROUND Insulin resistance contributes to the cardio-metabolic risk. The effect of leptin in obese and overweight population on insulin resistance was seldom reported. METHODS A total of 1234 subjects (572 men and 662 women) aged ≥18 y was sampled by the procedure. Adiposity measures included BMI, waist circumference, hip circumference, WHR, upper arm circumference, triceps skinfold and body fat percentage. Serum leptin concentrations were measured by an ELISA method. The homeostasis model (HOMA-IR) was applied to estimate insulin resistance. RESULTS In men, BMI was the variable which was most strongly correlated with leptin, whereas triceps skinfold was most sensitive for women. More importantly, serum leptin levels among insulin resistant subjects were almost double compared to the subjects who had normal insulin sensitivity at the same level of adiposity in both men and women, after controlling for potential confounders. In addition, HOMA-IR increased significantly across leptin quintiles after adjustment for age, BMI, total energy intake, physical activity and smoking status in both men and women (p for trend <0.0001). CONCLUSIONS There was a significant association between HOMA-IR and serum leptin concentrations in Chinese men and women, independently of adiposity levels. This may suggest that serum leptin concentration is an important predictor of insulin resistance and other metabolic risks irrespective of obesity levels. Furthermore, leptin levels may be used to identify the cardio-metabolic risk in obese and overweight population.Hui Zuo, Zumin Shi, Baojun Yuan, Yue Dai, Gaolin Wu, Akhtar Hussai

    Thermodynamics of deformed AdS5_5 model with a positive/negative quadratic correction in graviton-dilaton system

    Full text link
    By solving the Einstein equations of the graviton coupling with a real scalar dilaton field, we establish a general framework to self-consistently solve the geometric background with black-hole for any given phenomenological holographic models. In this framwork, we solve the black-hole background, the corresponding dilaon field and the dilaton potential for the deformed AdS5_5 model with a positive/negative quadratic correction. We systematically investigate the thermodynamical properties of the deformed AdS5_5 model with a positive and negative quadratic correction, respectively, and compare with lattice QCD on the results of the equation of state, the heavy quark potential, the Polyakov loop and the spatial Wilson loop. We find that the bulk thermodynamical properties are not sensitive to the sign of the quadratic correction, and the results of both deformed holographic QCD models agree well with lattice QCD result for pure SU(3) gauge theory. However, the results from loop operators favor a positive quadratic correction, which agree well with lattice QCD result. Especially, the result from the Polyakov loop excludes the model with a negative quadratic correction in the warp factor of AdS5{\rm AdS}_5.Comment: 26 figures,36 pages,V.3: an appendix,more equations and references added,figures corrected,published versio
    corecore