3,173 research outputs found

    The Power-Sharing Event Dataset (PSED): a new dataset on the promises and practices of power-sharing in post-conflict countries

    Full text link
    Past research on the relationship between power-sharing arrangements and the recurrence of civil conflict has primarily analyzed the promises of power-sharing stipulated in peace agreements. What happens afterwards, however, has not yet been sufficiently explored. This represents a major research gap, as the actual practices of power-sharing in post-conflict countries are likely to be influential in the possibility of civil conflict recurring. To address this shortcoming, we present a new global dataset on the promises and practices of power-sharing between the government of a state and former rebels in post-conflict countries. The collected data captures if, when and how power-sharing institutions have been promised and/or put into place, and whether they have subsequently been modified or abolished. The dataset encompasses every peace agreement signed after the cessation of a civil conflict in the years between 1989 and 2006, and covers a five-year period after the signature of each of these agreements (unless violence recurred earlier). The unit of analysis is the government–rebel dyad during the post-conflict period and data is recorded in an event data format. A first analysis of the Power-Sharing Event Dataset (PSED) reveals that the effects of the promises of power-sharing on civil conflict recurrence follow a different logic than the effects of their practices. This finding emphasizes the necessity for in-depth analyses of post-conflict situations for which the PSED provides the necessary data

    GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals.

    Get PDF
    Loci discovered by genome-wide association studies predominantly map outside protein-coding genes. The interpretation of the functional consequences of non-coding variants can be greatly enhanced by catalogs of regulatory genomic regions in cell lines and primary tissues. However, robust and readily applicable methods are still lacking by which to systematically evaluate the contribution of these regions to genetic variation implicated in diseases or quantitative traits. Here we propose a novel approach that leverages genome-wide association studies' findings with regulatory or functional annotations to classify features relevant to a phenotype of interest. Within our framework, we account for major sources of confounding not offered by current methods. We further assess enrichment of genome-wide association studies for 19 traits within Encyclopedia of DNA Elements- and Roadmap-derived regulatory regions. We characterize unique enrichment patterns for traits and annotations driving novel biological insights. The method is implemented in standalone software and an R package, to facilitate its application by the research community

    Direct Formation of Supermassive Black Holes via Multi-Scale Gas Inflows in Galaxy Mergers

    Full text link
    Observations of distant bright quasars suggest that billion solar mass supermassive black holes (SMBHs) were already in place less than a billion years after the Big Bang. Models in which light black hole seeds form by the collapse of primordial metal-free stars cannot explain their rapid appearance due to inefficient gas accretion. Alternatively, these black holes may form by direct collapse of gas at the center of protogalaxies. However, this requires metal-free gas that does not cool efficiently and thus is not turned into stars, in contrast with the rapid metal enrichment of protogalaxies. Here we use a numerical simulation to show that mergers between massive protogalaxies naturally produce the required central gas accumulation with no need to suppress star formation. Merger-driven gas inflows produce an unstable, massive nuclear gas disk. Within the disk a second gas inflow accumulates more than 100 million solar masses of gas in a sub-parsec scale cloud in one hundred thousand years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can grow to a billion solar masses in less than a billion years by accreting gas from the surrounding disk.Comment: 26 pages, 4 Figures, submitted to Nature (includes Supplementary Information

    New evidence for a massive black hole at the centre of the quiescent galaxy M32

    Full text link
    Massive black holes are thought to reside at the centres of many galaxies, where they power quasars and active galactic nuclei. But most galaxies are quiescent, indicating that any central massive black hole present will be starved of fuel and therefore detectable only through its gravitational influence on the motions of the surrounding stars. M32 is a nearby, quiescent elliptical galaxy in which the presence of a black hole has been suspected; however, the limited resolution of the observational data and the restricted classes of models used to interpret this data have made it difficult to rule out alternative explanations, such as models with an anisotropic stellar velocity distribution and no dark mass or models with a central concentration of dark objects (for example, stellar remnants or brown dwarfs). Here we present high-resolution optical HST spectra of M32, which show that the stellar velocities near the centre of this galaxy exceed those inferred from previous ground-based observations. We use a range of general dynamical models to determine a central dark mass concentration of (3.4 +/- 1.6) x 10^6 solar masses, contained within a region only 0.3 pc across. This leaves a massive black hole as the most plausible explanation of the data, thereby strengthening the view that such black holes exist even in quiescent galaxies.Comment: 8 pages, LaTeX, 3 figures; mpeg animation of the stellar motions in M32 available at http://oposite.stsci.edu/pubinfo/Anim.htm

    Use of endovascular embolization to treat a ruptured arteriovenous malformation in a pregnant woman: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pregnancy has been linked to increased rates of arteriovenous malformation rupture. This link remains a matter of debate and very few studies have addressed the management of arteriovenous malformation in pregnancy. Unruptured arteriovenous malformations in pregnant woman generally warrant conservative management due to the low rupture risk. When pregnant women present with ruptured arteriovenous malformation, however, surgery is often indicated due to the increased risk of re-rupture and associated mortality. Endovascular embolization is widely accepted as an important component of contemporary, multimodal therapy for arteriovenous malformations. Although rarely curative, embolization can facilitate subsequent surgical resection or radiosurgery. No previous reports have been devoted to the endovascular management of an arteriovenous malformation in a pregnant woman.</p> <p>Case presentation</p> <p>A 23-year-old Caucasian woman presented with headache and visual disturbance after the rupture of a left parieto-occipital arteriovenous malformation in the 22nd week of her pregnancy. After involving high-risk obstetric consultants and taking precautions to shield the fetus from ionizing radiation, we proceeded with a single stage of endovascular embolization followed soon after by open surgical resection of the arteriovenous malformation. There were several goals for the angiography in this patient: to better understand the anatomy of the arteriovenous malformation, including the number and orientation of feeding arteries and draining veins; to look for associated pre-nidal or intra-nidal aneurysms; and to partially embolize the arteriovenous malformation via safely-accessible feeders to facilitate surgical resection and minimize blood loss and operative morbidity.</p> <p>Conclusion</p> <p>From our experience and review of the literature, we maintain that ruptured arteriovenous malformations in pregnancy may be managed in a similar manner to those in non-gravid women. Precautions should be taken to reduce the operative time and exposure of the fetus to ionizing radiation and contrast agents.</p

    Implementation of routine outcome measurement in child and adolescent mental health services in the United Kingdom: a critical perspective

    Get PDF
    The aim of this commentary is to provide an overview of clinical outcome measures that are currently recommended for use in UK Child and Adolescent Mental Health Services (CAMHS), focusing on measures that are applicable across a wide range of conditions with established validity and reliability, or innovative in their design. We also provide an overview of the barriers and drivers to the use of Routine Outcome Measurement (ROM) in clinical practice

    Roll to roll atmospheric pressure plasma enhanced CVD of titania as a step towards the realisation of large area perovskite solar cell technology

    Get PDF
    Atmospheric pressure plasma enhanced CVD (AP PECVD) systems have attracted considerable interestin recent years due to the significant benefits for large area, low cost substrates and low temperatureoperation. In this work we describe the use of a bespoke roll to roll AP PECVD process to produce largearea, functional TiO2-x films for use as hole blocking electron transport layers in perovskite solar cellarchitectures, a critical component typically produced by spin coating or vacuum based technologies.The AP PECVD produced films can be used to construct cells with overall efficiencies greater than fromthe sputtered reference material (13.57 vs. 13.15% maximum power point for 1 cm2 cells). Discussion ofthe cell properties suggests scope for further optimisation, maximising the potential of this approach

    The impact of unloading stresses on post-caldera magma intrusions

    Get PDF
    Calderas represent morphological depressions several kilometers in diameter, and the unloaded crustal stresses they produce can form rapidly (e.g. Pinatubo, 1990) or slowly (e.g. Hawaii, 2018). Active calderas are known as sites of persistent magma intrusions, and yet the dynamics of their shallow plumbing system is not well constrained. We use scaled laboratory experiments to study how experimental intrusions are created beneath a caldera by injecting dyed water (magma analogue) into the base of an elastic gelatin solid (crust analogue) with a cylindrical cavity in its surface to mimic a caldera-like topography. The evolving dike geometry and stress field were qualitatively determined using polarized light, and digital image correlation allowed the incremental and total strain to be quantified by tracking passive-tracer particles in the gelatin that fluoresced in a thin 2D vertical laser sheet. Our results show that the unloaded stress field from a caldera can cause a divergence of vertical dikes, and leads to circumferential dikes and cone sheets. When the caldera was large the initially vertical dike became arrested, then grew laterally via circumferentially-propagating en echelon segments; these eventually joined to complete a cone sheet that was parallel to, but extended outside and beneath, the large caldera. When the caldera was small, a circumferential dike erupted, producing a short fissure which was outside, but parallel to, the caldera. We suggest that the distinct curved geometry, velocity, strain and stress characteristics of circumferential dikes and cone sheets can be used to interpret the origin and growth of post-caldera magmatism and the likelihood of eruption in caldera systems

    Transmutations and spectral parameter power series in eigenvalue problems

    Full text link
    We give an overview of recent developments in Sturm-Liouville theory concerning operators of transmutation (transformation) and spectral parameter power series (SPPS). The possibility to write down the dispersion (characteristic) equations corresponding to a variety of spectral problems related to Sturm-Liouville equations in an analytic form is an attractive feature of the SPPS method. It is based on a computation of certain systems of recursive integrals. Considered as families of functions these systems are complete in the L2L_{2}-space and result to be the images of the nonnegative integer powers of the independent variable under the action of a corresponding transmutation operator. This recently revealed property of the Delsarte transmutations opens the way to apply the transmutation operator even when its integral kernel is unknown and gives the possibility to obtain further interesting properties concerning the Darboux transformed Schr\"{o}dinger operators. We introduce the systems of recursive integrals and the SPPS approach, explain some of its applications to spectral problems with numerical illustrations, give the definition and basic properties of transmutation operators, introduce a parametrized family of transmutation operators, study their mapping properties and construct the transmutation operators for Darboux transformed Schr\"{o}dinger operators.Comment: 30 pages, 4 figures. arXiv admin note: text overlap with arXiv:1111.444
    corecore