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Loci discovered by genome-wide association studies (GWAS) predominantly map outside protein-coding 

genes. The interpretation of the functional consequences of non-coding variants can be greatly enhanced by 

catalogues of regulatory genomic regions in cell lines and primary tissues. However, robust and readily 

applicable methods to systematically evaluate the contribution of these regions to genetic variation 

implicated in diseases or quantitative traits are still lacking. Here we propose a novel approach that 

leverages GWAS findings with regulatory or functional annotations to classify features relevant to a 

phenotype of interest. Within our framework, we account for major sources of confounding that current 

methods do not offer. We further assess enrichment for 29 GWAS traits within ENCODE and Roadmap 

derived regulatory regions. We characterize unique enrichment patterns for traits and annotations, driving 

novel biological insights. The method is implemented in standalone software and an R package to facilitate 

its application by the research community. 

  

Introduction 

  

Genome-wide association studies (GWAS) in humans have discovered susceptibility variants for complex 

diseases and biomedical quantitative traits, with over 75,000 associations found to date 1,2, representing a 

large investment in resources, time and organization by the worldwide research community. The majority 

(~90%) of implicated variants are classified as intronic or intergenic 3 and thus cannot be readily assigned to an 
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underlying cellular or molecular mechanism. This has prompted a number of efforts to annotate the putative 

functional consequences of variants in cell-specific contexts from experimentally derived regulatory regions 

(e.g. regions marked by histone modifications, transcription factor binding 3–6), principally as a means to inform 

and accelerate functional validation. 

  

The robust identification of the combinations of annotations for these regulatory regions (henceforth referred 

to generically as ‘regulatory annotations’) and cell types that are biologically most informative for a given 

disease or quantitative trait of interest (henceforth referred generically to as 'phenotype') requires that one 

can confidently distinguish correlations driven by biology from those arising by chance. Regulatory annotations 

may cover a large proportion of the genome, and thus many disease-associated variants will map within them 

by chance. In addition, the heterogeneous distribution of genetic variants and functional regions in the 

genome may result in their non-random association with genomic features such as genes 7,8, which in turn may 

drive spurious correlations that confound correct interpretation of these correlation patterns. 

  

Functional enrichment methods assess the relative contribution of regulatory annotations to a phenotype of 

interest. In their simplest implementation, they estimate enrichment of association p-values (or z-scores) 

based on comparisons of the full set of genome-wide association (GWA) variants 9–13, or on subsets of highly 

associated variants (e.g. genome-wide significant variants) 14–16. These approaches have identified many 

biologically plausible patterns of enrichment and can be broadly used for ranking the relative contribution of 

features. For instance, variants associated with lipid traits and Crohn’s disease are enriched in open chromatin 

derived from liver and immune cells, respectively 13, reflecting biological functions. However, there is currently 

little confidence in interpreting unexpected enrichments, because of various statistical concerns. First, overly 

simplistic models that do not account for known confounders such as local linkage disequilibrium (LD) and 

local gene density can lead to spurious enrichment patterns 14.  Second, tests based on subsets of variants 

typically probe a limited number of genomic features, whereas evidence of enrichment occurs well below 

genome-wide significance 11,12. Due to the large number of annotations now available, a third problem has 

emerged of prioritizing the most informative set from a large number of often correlated functional 

annotations. Methodological improvements are thus needed to increase the accuracy of inference, and to 

realize the full potential of those costly experiments in focused analysis.  

  

Here we present a novel statistical approach that leverages GWAS findings with functional (i.e. regulatory or 

protein-coding) annotations to find features relevant to a phenotype of interest. This method accounts for LD, 

matched genotyping variants and local gene density with the application of logistic regression to derive 

statistical significance. We name our method GARFIELD, which stands for GWAS Analysis of Regulatory or 

Functional Information Enrichment with LD correction. We use GARFIELD to analyze the enrichment patterns 

of publicly available GWAS summary statistics using regulatory maps from the ENCODE 3 and Roadmap 

Epigenomics 5 projects.  We describe expected and novel enrichments that illustrate the molecular and cellular 

basis of well-studied traits, which we expect to help drive novel biological insights and enhance efforts to 

prioritize variants for focused functional exploration. Finally, we developed new software to facilitate the 

application of our approach by the research community, and tools for effective visualization of enrichment 

results that scale to thousands of potential functional elements.  

 

Results 

  

Method Overview 

  

The analysis workflow implemented in GARFIELD is summarized in Figure 1 and Online Methods. The method 

requires four inputs: (i) a set of genome-wide genetic variant association p-values with a phenotype of 

interest; (ii) genome-wide genomic coordinates for regulatory annotations of interest; (iii) lists of LD tags for 



each variant (r2 ≥ 0.01 and r2 ≥ 0.8 within 1-MB windows) from a reference population of interest (e.g. 

Caucasian) and (iv) the distance of each variant to the nearest transcription start site (TSS). Given these inputs, 

the method first uses a greedy procedure to extract a set of independent variants from the genome-wide 

genetic variants, using LD (r2 ≥ 0.01) and distance information (‘LD pruning step’). Second, it annotates each 

variant with a regulatory annotation if either the variant, or a correlated variant (r2 ≥ 0.8), overlaps the feature 

(‘LD tagging annotation step’). Third, it calculates odds ratios (OR) and enrichment p-values at different GWAS 

p-value thresholds (denoted as ‘T’) for each annotation using a logistic regression model with ‘feature 

matching’ (Online Methods) on variants by distance to the nearest TSS and number of LD proxies (r2 ≥ 0.8) 

(used as categorical covariates). This pruning strategy is conservative, as a potential loss of the true causal 

variant at a small fraction of the loci due to pruning will be offset by the analysis of genome-wide enrichment 

patterns. We thus believe this is a conservative but sound approach for identifying annotations that harbor 

more GWAS variants (at a given threshold T) than expected by chance. To correct for multiple testing on the 

number of different annotations, we further estimate the effective number of independent annotations by 

using the eigenvalues of the correlation matrix of the binary annotation overlap matrix from Figure 1 (adapted 

from Galwey et al. 17) (Online Methods) and then apply a Bonferroni correction at the 95% significance level. 

This takes into account the tissue-selective components of regulatory data, namely that closely related cell 

types and tissues are more similar to each other than different ones. Our single annotation approach can be 

viewed as an extension of Maurano et al. 11 (see also Supplementary Table 1) with two critical improvements. 

First, we account for the effect of local variant correlations by restricting enrichment calculations to sets of 

independent variants (LD pruning step). Second, we employ a testing procedure that accounts for systematic 

differences in gene distance and number of proxies in the variant set. 

 

Additionally, we implement a heuristic procedure to combine the biological signal contained in correlated 

annotations, which allows us to identify conditionally independent sets of regulatory annotations 

underpinning the enrichment signals. To reduce the computational burden of searching through all possible 

combinations of available annotations, we first obtain enrichment p-values for all annotations separately, 

using the default single-annotation GARFIELD model. We then rank all statistically significant annotations by 

their enrichment p-value and iteratively add each such annotation to the model if it significantly improves the 

model fit compared to the model not including the annotation (analysis of deviance using a chi-squared test).  

 

We compared GARFIELD to five widely used alternative methods (LDSC 10, fgwas 13, GoShifter 14, GREGOR 16 

and GPA 9), while noting that benchmarking of methods is typically best done by investigators independent of 

the method developers. To estimate the false positive rate (FPR), we used 21 real disease or quantitative trait 

GWASs with the required summary statistics for all methods and greater than five independent genetic 

variants at the T < 10-8 threshold (Online Methods). We assessed the enrichment of each trait against 1,000 

peak region annotations, simulated to match observed peak lengths and between peak distances for DNaseI 

hypersensitive sites (DHS) in HepG2 cells (ENCODE). We compared GARFIELD to the five alternative methods 

and to a naive model, where enrichment ORs are calculated without accounting for LD or other features. FPRs 

were estimated by the observed proportion of significantly enriched annotations per phenotype (Online 

Methods). At the 5% significance level, methods not modelling LD produced significantly inflated FPRs (0.15 

and 0.33 on average for Naïve and GPA, respectively) (Figure 2a). GARFIELD, fgwas, LDSC and GoShifter 

preserved the FPR for all traits, while GREGOR yielded more false positive results than expected (average FPR 

0.09). Further assessment of GARFIELD for a set of 29 traits showed that FPRs are also preserved when 

lowering the threshold from T < 10-8 to T < 10-5 (Supplementary Figure 1a). 

  

To assess the value of feature matching in significance testing, we employed GARFIELD with and without 

feature correction to 424 open chromatin annotations in 29 phenotypes at the T < 10-8 threshold. As expected, 

we found that feature matching controls for biases in enrichment analysis by significantly reducing the number 

of observed enrichments (Wilcoxon signed rank test proportion median = 0.46, p-value = 1.4 × 10-4) (Figure 



2b). We further explored the relative contribution of each feature by comparing the number of significant 

enrichments detected in a feature-corrected model compared to the uncorrected model. We found median 

proportion reduction estimates of enrichments of 0.34 (p-value = 1.4 × 10-4) and 0.10 (p-value = 1.1 × 10-3) for 

the number of LD proxies and TSS distance, respectively (Supplementary Figure 1b-c). Estimates were 

concordant between GWAS p-value thresholds (Supplementary Figure 1d). These tests suggest that LD proxy 

number is the single most important confounder, although not sufficient to correct for individually when 

compared to the model correcting for both features together.  

 

Enrichment in open chromatin regions 

  

To assess the relative enrichment of phenotype-genotype associations in different cell types, we first applied 

GARFIELD to a generic regulatory annotation denoting open chromatin (DNaseI hypersensitive sites) in 424 cell 

lines and primary cell types from ENCODE 3 and Roadmap Epigenomics 5 (Supplementary Table 2). We 

considered five diseases and 24 quantitative traits with publicly available GWAS summary statistics. For each 

trait-annotation pair we derived enrichment estimates at eight GWAS P-value thresholds (T < 10-1 to T < 10-8). 

At the most stringent cut-off (T < 10-8), there were a median of 21 independent variants per trait after LD 

pruning (range 0-117, Table 1 and Supplementary Table 3), while at a more permissive threshold (T < 10-5) 

there were a median of 76 variants per trait (range 11-619).  

 

We found statistically significant enrichments (p < 2.6 × 10-4; Online methods, Supplementary Note) for the 

majority of traits considered, highlighting clear differences in enrichment patterns between traits 

(Supplementary Table 4). As clearly visible from enrichment wheel plots, some traits displayed relatively 

ubiquitous enrichment (e.g. height, Figure 3a), while others showed relatively narrow enrichment (e.g. 

ulcerative colitis, Figure 3b, see also Supplementary Figure 2). Blood cells were overall the most enriched 

tissue type in hematological traits and autoimmune diseases, but provided little to no enrichment for glycemic, 

blood pressure and anthropometric traits (except height which was enriched in nearly all tissues). As 

predicted, incorporating sub-threshold associations (T < 10-5) increased the resolution of enrichment patterns 

across traits (Table 1). For instance, at T < 10-8 there were no annotations enriched for waist-to-hip ratio 

(WHR), while at T < 10-5 there were 19 significant enrichments, 18 of which coming from muscle or fetal 

muscle tissue. For HbA1C and fasting glucose again there were no enrichments at T < 10-8, while at T < 10-5 we 

uncovered links to blood, fetal stomach and fetal intestine tissues. Additionally, for low density lipoprotein 

(LDL) cholesterol we found a single enrichment in colon at T < 10-8, while the permissive threshold allowed us 

to detect much larger number of relevant annotations (75), including liver, blood and fetal intestine cell types. 

Overall, 89% of the enrichments at the T < 10-8 threshold were also identified at T < 10-5 (between-threshold 

log10 enrichment p-value correlation = 0.85) (Supplementary Figure 3) showing high degree of agreement 

between thresholds. 

  

The observed enrichments reflect current understanding of key cellular types for disease, augmented with 

novel observations. In the former category were enrichments of lipid traits in blood, liver, fetal intestine and 

fetal thymus cell types; of hematological traits in blood, and of autoimmune diseases (ulcerative colitis, 

Crohn’s disease, inflammatory bowel disease (IBD)) in blood and fetal intestine 11,13,18. Potentially interesting 

examples of the latter category include the enrichment of Caco-2 (a well-established gut epithelia cellular 

model) elements for LDL cholesterol, the enrichment of (fetal) muscle and placenta cell type elements in high 

density lipoprotein (HDL) cholesterol and foetal intestine in Hemoglobin (HGB). For each trait, we also 

employed GARFIELD’s heuristic multiple annotation approach illustrated earlier to further prioritize a 

parsimonious set of non-correlated cell types from those with significant enrichment. Only a small proportion 

of enriched annotations detected under univariate settings were retained in the multiple annotation model 

(proportion median = 17%, range 2-100%; median number of annotations retained = 2, range 1-8; Table 1 and 

Supplementary Figure 4). For instance, in height we narrow down the annotations from 364 to 7 (2%). These 



findings are suggestive of a high degree in redundancy between annotations, while also highlighting that in the 

majority of cases biological enrichments are driven by more than a single annotation. For instance, for HDL 

cholesterol we obtain conditionally independent signals coming from blood and liver cell types. 

 

Next, we sought to evaluate GARFIELD against alternative enrichment methods when considering empirical 

phenotypes and DHS data. We performed enrichment analysis for each of the 21 traits from the simulation 

study in each of the 424 cell types using each of the five methods (GARFIELD, GoShifter, fgwas, GREGOR and 

LDSC) shown previously to preserve (or nearly preserve) FPR in simulations (Online Methods; Supplementary 

Table 5). GREGOR yielded the largest number of enrichments (median = 24, max = 398), followed by GARFIELD 

(median = 10, max = 364). Fgwas and LDSC yielded intermediate levels of enrichment (median = 5, max = 327; 

median = 5, max = 144, respectively), while GoShifter was very conservative (median = 0, max = 5). 

Stratification of the enrichments to groups according to the number of methods supporting them further 

showed that GREGOR identified the largest number of enrichments found by at least one other method. 

GARFIELD closely followed GREGOR, whereas fgwas, LDSC and GoShifter showed much lower between-method 

concordance rates. GREGOR also identified the largest number of method-specific enrichments, however, the 

inflated FPR indicates that more enrichments are discovered at the cost of also reporting more false positives, 

making utility of GREGOR alone less desirable in practice (Figure 4a). In the absence of a truth set, the 

observation that GARFIELD captures a large proportion of enrichments consistent with other methods, while 

preserving the FPR, provides an indirect assessment of the robustness of our approach. Overall, enrichments 

of blood cell traits with blood cell regulatory annotations tended to be highly consistent between most 

methods (supported by GARFIELD for 7 traits; GREGOR in 8; fgwas and LDSC in 5 and GoShifter in 1; Figure 4b), 

as expected given their clear biological relevance. Likewise, we observed highly consistent results for height in 

the majority of cell types; schizophrenia (SCZ) in blood and fetal brain; HDL cholesterol in liver, blood and fetal 

placenta (supported by GARFIELD, GREGOR and fgwas); triglycerides in blood (GARFIELD, GREGOR, fgwas and 

LDSC); mean corpuscular volume (MCV) in fetal stomach, fetal spleen and fetal thymus, mean corpuscular 

hemoglobin (MCH) in fetal intestine, fetal stomach and fetal spleen, all of which were supported by at least 

three methods.  

 

Finally, we compared the average CPU time used per method, trait and annotation based on the analysis of 21 

traits and 424 annotations. GARFIELD was faster than all other methods with an average of 0.64 mins needed, 

compared to 2.32 mins for GoShifter, 6.70 mins for LDSC, 16 mins for fgwas and 0.96 mins for GREGOR (Online 

Methods). It has to be noted however that LDSC is fast to run but had a substantial computational burden of 

generating the necessary input files for our custom data (Supplementary Table 6). 

 

Enrichment in promoter and enhancer marks 

 

In light of the current knowledge of relevant links between cell types and complex traits based on promoter 

and enhancer activity, we also sought to evaluate GARFIELD against alternative enrichment methods when 

considering empirical phenotypes and marks of active enhancer (H3K27ac) and active promoter (H3K4me3) 

activity in 127 cell types, similarly to DHS comparisons presented earlier. 

 

We found statistically significant enrichments (p < 5 × 10-4; Online methods) that confirm known biology for 

both H3K27ac and H3K4me3 (Supplementary Table 5). Namely, height was enriched in the majority of tissues 

for both regulatory marks; SCZ showed predominantly enriched in central nervous system (CNS) tissue; blood 

cell traits were enriched in HSC/Blood/Immune cell types and lipids traits in liver tissues for both marks. 

Overall results also show fewer and more specific enrichments in H3K27ac in comparison to H3K4me3 (mean 

17, range [0-72]; and mean 20, range [0-106] number of enrichments, respectively) consistent with higher cell 

type specificity found in active enhancers versus active promoter regions. 

 



Enrichment in genomic segmentations 

  

We additionally sought to compare the relative enrichment of different types of functional genomic marks, 

using ChromHMM 15 data on genomic segmentations for 127 cell types (Supplementary Table 7). For each 

segmentation state and cell type, we analyzed our 29 phenotypes at two different GWAS p-value thresholds (T 

< 10-5 and T < 10-8). Overall, when considering only significantly enriched trait-annotation pairs (p < 3.3 × 10-5; 

Supplementary Table 8), we found higher levels of enrichment for promoters (median OR = 3.4, range [2.0-

10.9] for T < 10-5) and enhancers (median OR = 3.8, range [1.9-68.0]) compared to transcribed regions (median 

OR = 2.6, range [1.8-13.8]), and depletion in quiescent regions (Figure 5a) (similar patterns were obtained for T 

< 10-8, Supplementary Figure 5). Given that transcriptional states mainly mark active genes, it is unsurprising to 

see the contrast of enrichment in transcriptional regions compared to the depletion in quiescent regions. 

Interestingly the enhancer states consistently had stronger enrichments than transcribed regions, an 

observation in agreement with enrichments of hematological traits in cell-matched regulatory states from the 

BLUEPRINT project 19. To confirm these patterns, while controlling for the effect of annotation density on the 

number of enrichments found, we sought to compare only ORs for cell types enriched in both transcribed and 

enhancer pair states (and promoter and transcribed states). Similarly to our previous observations, results 

showed on average greater ORs for enrichment for enhancers when compared to transcribed regions (Figure 

5b) (with a similar but weaker effect for promoters), which provides further evidence that our observation is 

not due to difference in power for enrichment detection between annotations of different density but due to 

their biological relevance to the studied traits. 

 

When considering cell-type specificity, again the trait height was the most ubiquitously enriched phenotype. In 

general, we found the largest ORs for anthropometric traits in active enhancers in adipose and skeletal muscle 

tissues; glycemic traits in active enhancers in pancreatic islets, poised promoters in pancreatic islets and 

stomach mucosa and transcription regulation in blood; lipid traits in active enhancers in liver, transcription 

enhancers in blood and fetal intestine tissue; autoimmune diseases and blood traits in active enhancers in 

tissues including blood and thymus; psychiatric disorder in transcription and bivalent promoters in fetal brain. 

As expected, incorporating sub-threshold associations again greatly increased the resolution of enrichment 

patterns across different traits (Table 1). For example, we found no significant enrichment at T < 10-8 for the 

glycemic indices β-cell activity index (HOMA-B), glycated hemoglobin (HbA1C) and fasting glucose (FG), 

whereas at T < 10-5 HOMA-B was predominantly enriched in active enhancers in pancreatic islets and ES-I3 

cells, HbA1C in active enhancers in psoas muscle and fasting glucose in poised promoters in pancreatic islets 

and stomach mucosa. 

  

Finally, we assessed the extent to which traits shared significantly enriched annotations, by comparing the 

number of cell types per segmentation state that were found to be significantly enriched (or depleted) for a 

single trait compared to multiple traits (Figure 5c and Supplementary Figure 5). Our results confirmed patterns 

of higher cell type specificity for enhancer states, with a median of 67% of cell types in enhancer states that 

were unique to a single trait compared to only 45% for promoter regions at T<10-5 (76% and 50% at T<10-8, 

respectively). This confirms enhancer states as prime regions of interest 19 when seeking to investigate gene 

function underlying complex trait and disease associations.    

  

Software implementation 

  

Many GWA studies seek to explore functional enrichment patterns, but often rely on customized, in-house 

pipelines.  We implemented GARFIELD as a standalone tool in C++ in order to facilitate use by the research 

community (Online Methods). The software allows for enrichment analysis of any user-provided trait with 

variant GWAS p-values and GRCh37 genomic coordinates. We provide over 1000 GENCODE 20, ENCODE 3 and 

Roadmap Epigenomics 5 pre-compiled annotations, UK10K sequence LD data and TSS distance information for 



a ready to use package. Furthermore, custom annotation data can be easily accommodated when provided in 

a simple bed format. In addition, we have also developed a Bioconductor package for the R statistical 

framework to further increase usability. 

  

Discussion 

  

Large-scale efforts 3–6 have been devoted to systematically mapping molecular traits associated with genomic 

regulatory regions. They have greatly enhanced the annotation of putative functional consequences of non-

coding variants in cell-specific contexts, and have further shown to provide links to disease association. 

However, current methods that aim to evaluate the contribution of such regions to genetic variation in disease 

cannot always do so robustly or are not readily applicable for systematic analysis and comparison of broad sets 

of features. In particular, it has been shown that LD and gene density can confound enrichment analysis results 
14. Here we further estimated the relative effect of each of those features and identified LD as the largest 

confounder. Additionally, because of their design, different genotyping platforms (and imputation strategies) 

can create different biases (e.g. number of variants, genomic location distribution). GARFIELD accounts for all 

those features, by obtaining independent signals, expansion to relevant annotations using a population scale 

LD reference and feature matching, and to the best of our knowledge there is no other method that can do so 

without making extremely restrictive assumptions (e.g. Pickrell et al. 13 assume at most one causal variant at a 

given genomic region). Furthermore, many available approaches use variants that reach genome-wide 

significance from association analysis (T < 5 × 10-8) although there has been evidence of enrichment occurring 

well below that level 11,12. To capture these effects, GARFIELD allows for parallel enrichment analyses at 

multiple p-value sub-thresholds, which improves power to detect statistically significant enrichment patterns 

by increasing the number of variants tested, thus enabling its application to traits with underpowered GWA 

studies. Finally, we provide a flexible software platform with effective visualization to enable researchers to 

carry out simultaneous enrichment analysis for thousands of annotations at multiple association thresholds. 

 

In our own application of GARFIELD on existing GWAS and functional datasets we identified a broad set of 

largely expected or previously identified enrichments, for example lipids traits in open chromatin in liver, 

hematological traits in blood and anthropometric traits in active enhancers in adipose tissue. A number of 

GWAS hits do not show significant enrichments even with established cell types when using higher thresholds, 

but GARFIELD’s stepwise, stratified approach uncovers these more nuanced enrichments, shown in the case of 

pancreatic islets with fasting HOMA-B. By analyzing large-scale genome segmentation data, we assessed the 

relative contribution of each segmentation state to the phenotypic traits. We discovered a larger number of 

enrichments coming from transcription states as opposed to promoter and enhancer states together with a 

larger number of shared cell types between traits. These findings may be biologically relevant, or could also be 

a result of statistically larger power for enrichment detection for broader region annotations. Here we show 

that study power differences are not responsible for larger OR values for significant enrichments in promoter 

and enhancer regions when compared to transcribed regions, highlighting them as much more relevant for 

trait associated variants. 

 

Robust, usable and modular methods are critical in the modern large-scale analysis arena, where we expect 

many discoveries to come from principled combinations of heterogeneous datasets. In our hands, GARFIELD 

provided the greatest number of enrichments on real data among methods with full control of FPR in 

simulated data and was among the fastest methods. However, we acknowledge that as authors of this method 

we are not the right group to provide unbiased benchmarking of these methods and look forward to 

independent analysis of these methods. We have already deployed GARFIELD in a number of association study 

settings both in house and more broadly in the community. Our aim in developing it has been to provide the 

most robust statistical framework for analyzing functional enrichments coupled with practical ease of use and 



visualization, and we hope the community will continue to exploit this tool to provide more insights into 

disease mechanisms. 
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Figure Legends 

  

Figure 1. Outline of the GARFIELD method. Top panel: three inputs (annotation, p-value and linkage 

disequilibrium (LD) data) are used for the first two analytical steps (LD pruning and variant functional 

annotation), which result in a binary annotation overlap matrix of V pruned variants and A annotations. Middle 

panel: a logistic regression approach is used for testing for enrichment at a GWAS significance P-value 



threshold T while controlling for confounding features such as TSS distance and number of LD proxies. Bottom 

panel: model selection procedure for multiple annotations.  

 

Figure 2. Method assessment. (a) Estimated false positive rate (FPR) from 21 publicly available disease or 

quantitative traits and n = 1,000 simulated independent annotations. The black horizontal line denotes the 5% 

FPR threshold. Error bars denote standard errors. (b) Comparison between the proportion of significant 

annotations (GARFIELD enrichment p-value < 2.6 × 10-4 for multiple testing correction) found from models 

accounting for number of proxies (N) and distance to nearest TSS (T) respectively (x-axis), to a model not 

accounting for any feature (y-axis), for each of 29 publicly available GWA studies and n = 424 DNaseI 

hypersensitive site annotations. Key of trait name labels is shown in Supplementary Table 3. 

  

Figure 3. Enrichment of genome-wide association analysis p-values in DNaseI hypersensitive sites (hotspots).  

(a) Height (HGT) (n = 2,468,982 GWAS variants). (b) Ulcerative colitis (UC) (n = 11,113,952 GWAS variants). 

Radial lines show odds ratio values at eight GWAS P-value thresholds (T) for all ENCODE and Roadmap 

Epigenomics DHS cell lines, sorted by tissue on the outer circle. Dots in the inner ring of the outer circle denote 

significant GARFIELD enrichment (if present) at T < 10-5 (outermost) to T < 10-8 (innermost) after multiple 

testing correction for the number of effective annotations and are coloured with respect to the tissue of the 

cell type they test. Font size of tissue labels reflects the number of cell types from that tissue. Crohn’s disease 

shows predominant enrichment in blood, fetal thymus and fetal intestine tissues whereas height exhibits an 

overall enrichment. OR, odd’s ratio.  

  

Figure 4. Method comparison for 21 GWAS datasets in DNaseI hypersensitive sites (hotspots) and histone 

modifications (H3K27ac and H3K4me3) at the T < 10-8 GWAS significance threshold. (a) Proportion of 

enriched cell types in DNaseI hypersensitive sites identified by each method, where enrichments are stratified 

by the number of methods that support them. GARFIELD, fgwas and LDSC are restricted to positive 

enrichments only so as to be comparable to GREGOR and GoShifter. (b) Summary of significant enrichments 

per tissue and per method for DNaseI hypersensitive data. A colored box is present if the corresponding 

method has found at least one significantly enriched cell type for that tissue after multiple testing correction. 

Colors correspond to the different methods and are the same as in panel a. A grey box denotes that the 

enrichment did not reach significance. Additionally, the size of each box represents the relative magnitude of 

the enrichment. Since each method uses a different enrichment statistic, we have scaled each of them 

separately per method and per trait (e.g. for GARFIELD we scaled the ORs for all cell types for HDL so that 1 

denotes the cell type with the highest enrichment found and 0 the lowest one). (c) Summary of significant 

enrichments per tissue and per method for H3K27ac data. (d) Summary of significant enrichments per tissue 

and per method for H3K4me3 data. (b-d) Sample sizes n per trait (and trait name labels) can be found in 

Supplementary Table 3 denoted by the number of variants in each GWAS study. 

  

Figure 5. Enrichment levels (log OR) and extent of sharing between traits for 25-state chromatin 

segmentations of the NIH Roadmap and ENCODE projects at the T < 10-5 GWAS significance threshold. (a) 

Distribution of significant (log) OR values across the 29 traits considered, split by segmentation state and 

coloured to highlight predicted functional elements (Supplementary Table 9). Number of points n is shown on 

the x-axis below each category. (b) Distribution of the pairwise difference between ORs from all enhancer, 

promoter and transcriptional enhancers and transcriptional regulatory states tested (‘state 1’) to ORs from 

transcription states for significant enrichments only (‘state 2’; e.g. measuring ORc,t
EnhA1-ORc,t

Tx for all cell types c 

and traits t for which p-valuec,t
EnhA1 and p-valuec,t

Tx are both significant). Number of points n is shown on the x-

axis below each category. Boxplots show the median (center line); upper and lower quartiles (box limits), 

whiskers, furthest away point less than l.5x interquartile range (whiskers); points in the distribution( grey 

points) and outliers (black points). (c) Sharing of significantly enriched (or depleted) annotations (n=127 cell 

types) across 27 phenotypes (excluding Crohn’s disease (CD) and Ulcerative colitis (UC) as categories of IBD). 



The barplot displays the number of cell types where an annotation is uniquely enriched/depleted in a trait or 

shared between traits. 

 



Table Legend 

 

Table 1. Summary of GARFIELD enrichment analyses in DNaseI hypersensitive sites, histone modifications 

and genomic segmentations per phenotype. 

Columns denote (A) phenotype category and (B) its index, (C) trait full name and (D) abbreviation, (E) total 

number of variants after LD pruning, (F) number of independent SNPs at GWAS p-value threshold 10-8, (G) 

number of enriched cell types in open chromatin marks at GWAS p-value threshold 10-8, (H) number of 

conditionally independent cell types in open chromatin marks at GWAS p-value threshold 10-8, (I) number of 

enriched cell types in H3K27ac at GWAS p-value threshold 10-8, (J) number of enriched cell types in H3K4me3 

at GWAS p-value threshold 10-8, (K) number of enriched cell types/segmentation states at GWAS p-value 

threshold 10-8, (L) number of depleted cell types/segmentation states at GWAS p-value threshold 10-8, (M) 

number of independent SNPs at GWAS p-value threshold 10-5, (N) number of enriched cell types in open 

chromatin marks at GWAS p-value threshold 10-5, (O) number of conditionally independent cell types in open 

chromatin marks at GWAS p-value threshold 10-5, (P) number of enriched cell types in H3K27ac at GWAS p-

value threshold 10-5, (Q) number of enriched cell types in H3K4me3 at GWAS p-value threshold 10-5, (R) 

number of enriched cell types/segmentation states at GWAS p-value threshold 10-5, (S) number of depleted 

cell types/segmentation states at GWAS p-value threshold 10-5, (T) Tissues showing the largest enrichment in 

open chromatin states per trait category, (U) Tissues/histone modifications showing the largest enrichment 

per trait category, (V) Tissues/segmentation states showing the largest enrichment per trait category. Total 

number of GWAS variants (n) per trait can be found in Supplementary Table 3. 
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DHSs Histone Modifications Segmentations 

Anthropometric 

1 Body mass index BMI  50,166  16 0 - 0 1 14 0 62 0 - 0 0 14 0 

foetal_muscle*  Connective/epithelial/bone 

active enhancers, 
tissues including 

adipose and skeletal 
muscle*  

1 Height HGT  49,909  114 364 7 65 106 297 0 290 395 10 88 124 806 28 

1 
Waist hip ratio 

adjusted for BMI 
WHR  50,500  7 0 - 0 0 0 0 34 19 2 2 0 27 0 

Glycaemic 

2 
2hr Glucose adjusted 

for BMI 
2hrG  46,691  1 0 - 0 0 0 0 11 0 - 0 0 1 0 

blood and 
foetal 

intestine 

foetal intestine, spleen, 
adipose, pancreas 

poised promoters in 
pancreatic islets and 

stomach mucosa, 
active enhancers in 

pancreatic islets and 
transcription 

regulation in blood 

2 HbA1C HbA1C  52,079  8 0 - 0 0 0 0 45 2 2 7 0 2 0 

2 Fasting Proinsulin FPI  56,429  10 0 - 0 0 22 0 30 1 1 1 0 0 5 

2 Fasting Glucose FG  51,578  13 0 - 0 0 0 0 43 11 3 1 2 7 0 

2 Fasting Insulin FI  50,132  0 0 - 0 0 0 0 12 0 - 1 0 0 0 

2 Type 2 Diabetes T2D  47,928  10 0 - 0 0 1 0 65 5 3 3 5 3 0 

2 HOMA-IR HOMA-IR  49,450  0 0 - 0 0 0 0 14 0 - 0 0 1 0 

2 HOMA-B HOMA-B  49,249  4 0 - 0 0 0 0 20 0 - 0 0 2 0 

Blood pressure 
3 

Diastolic blood 
pressure 

DBP  52,446  7 0 - 0 0 0 0 43 0 - 1 0 2 0 
lung left ventricle 

transcription 
enhancers in blood 

and left ventricle 3 
Systolic blood 

pressure 
SBP  52,592  7 0 - 0 0 4 0 48 1 1 3 0 9 0 

Lipids 

4 
High-density 
lipoprotein 

HDL  61,981  66 88 3 22 6 135 26 150 154 3 65 35 483 119 
several (liver, 
blood, foetal 

intestine, 
colon, foetal 

thymus) 

liver, blood, 
gastrointestinal and 

adipose 

active enhancers in 
liver, transcription 
enhancers in foetal 
intestine and blood 

4 Total cholesterol TC  62,029  64 0 - 2 1 8 6 131 15 3 20 16 122 14 

4 Triglyceride TG  61,999  36 12 2 6 1 2 0 95 43 3 29 32 41 0 

4 
Low-density 
lipoprotein 

LDL  61,933  49 1 1 7 6 12 2 115 75 3 25 23 45 27 

Haematological 

5 Haemoglobin count HGB  49,658  21 11 3 10 2 141 0 84 20 3 15 4 97 0 

blood HSC/Blood/Immune 
transcriptional 

regulation and active 
enhancers in blood 

5 
Mean corpuscular 

volume 
MCV  49,387  45 167 8 71 103 187 0 132 247 5 87 120 831 1 

5 Red blood cell count RBC  49,414  25 12 2 9 2 11 0 103 91 4 47 35 357 0 

5 
Mean corpuscular 

haemoglobin 
concentration 

MCHC  49,466  13 0 - 2 0 3 0 45 6 2 3 0 10 0 

5 
Mean corpuscular 

haemoglobin 
MCH  49,239  39 129 5 54 106 134 0 116 200 5 72 122 323 0 

5 Packed cell volume PCV  49,236  16 3 2 2 0 31 0 63 69 4 47 40 254 0 

5 Mean platelet volume MPV  56,683  27 6 2 3 1 4 0 76 18 3 17 3 37 1 

5 Platelet count PLT  58,181  35 10 2 15 9 19 0 111 66 4 74 95 352 2 

Autoimmune 
disease 

6 Crohn's Disease CD  347,359  65 183 4 28 35 54 22 215 187 5 40 67 221 28 blood, foetal 
intestine, 

foetal thymus 
blood immune and 

gastrointestinal cells 

active enhancers in 
blood immune cells 

and thymus 6 Ulcerative colitis UC  356,248  67 27 2 13 11 49 3 218 150 3 39 45 183 22 

6 
Inflammatory Bowel 

Disease 
IBD 393,352 94 164 4 35 17 155 15 283 168 7 40 37 263 38   

Psychiatric disorder 7 Schizophrenia SCZ  170,825  117 4 1 17 15 98 0 619 2 2 8 1 29 6 
blood, foetal 

brain 
CNS and HSC/Blood/ 

Immune 

transcription/bivalent 
promoters in foetal 

brain 

Features = Total independent SNPs significant in GWAS for a given T * excluding height 
 

 
  

Total number of GWAS variants (n) per trait can be found in Supplementary Table 3. 



Online Methods 

  

Association Summary Statistics Data 

GWAS summary statistics from the analysis of 29 disease and quantitative phenotypes were obtained from a 

number of sources (see URLs). From GIANT we downloaded large studies on BMI 21, Height 22 and Waist hip 

ratio adjusted for BMI 23. From MAGIC we downloaded data on BMI adjusted 2hr glucose 24, HOMA B, HOMA 

IR, Fasting glucose, Fasting insulin 25, Fasting proinsulin 26 and HbA1C 27. Global lipid GWAS summary statistics 

for LDL, HDL, TC and TG we obtained from 28. Crohn’s disease, Ulcerative colitis and Inflammatory Bowel 

Disease 29 data was obtained from IIBDGC. SBP and DBP 30 data was downloaded ICBP. Type 2 diabetes 31 

GWAS summary statistics were downloaded from DIAGRAM. Schizophrenia data from 32 was further obtained 

and analysed. Blood trait data on HGB, MCH, MCV, MCHC, RBC and PCV was additionally obtained from the 

authors of van der Harst et al 33 and MPV and PLT data from the authors of Gieger et. al. 34 (Supplementary 

Table 3).  

  

DHS data 

DNaseI hypersensitive sites (hotspots) were obtained from ENCODE and the NIH Roadmap Epigenomics 

Mapping (see URLs) on all available cell types. DHS data was processed following DHSs data processing 

protocol described in an ENCODE study 4. Further information on the data can be found in Supplementary 

Table 2. 

 

H3K27ac and H3K4me3 data 

Processed NarrowPeak consolidated epigenome data was downloaded from the Roadmap Epigenomics portal 

(see URLs) for all available cell types for H3K27ac and H3K4me3 marks (98 and 127 cell types, respectively). 

Cell line information can be found in Supplementary Tables 7.  

  

Epigenome segmentation data 

Data from a chromatin state model with 25 states based on imputed data for 12 marks (H3K4me1, H3K4me2, 

H3K4me3, H3K9ac, H3K27ac, H4K20me1, H3K79me2, H3K36me3, H3K9me3, H3K27me3, H2A.Z, and DNase) 

across 111 Roadmap Epigenomics 15 and 16 ENCODE reference epigenomes was downloaded from the 

Roadmap Epigenomics portal (see URLs). State and cell line information can be found in Supplementary Tables 

9 and 7. 

  

LD data 

LD information (proxies) was calculated using PLINK 35 (v1.7) and the --tag-r2 0.01 --tag-kb 500 (and --tag-r2 0.8 

--tag-kb 500) flags in order to find all proxies within a 1Mb window around each variant at R-squared 

thresholds of 0.01 and 0.8. We computed these from the UK10K 36 sequence data on 3621 samples from two 

population cohorts (TwinsUK and ALSPAC) (data described elsewhere 36). Variants that were not observed in 

the UK10K data were excluded from our analysis. 

  

Data processing 

Given a genome-wide distribution of p-values for association with a given disease or quantitative trait, we 

perform the following pre-processing steps in order to calculate the level of enrichment and its significance for 

an annotation of interest. To remove possible biases due to linkage disequilibrium (LD) or dependence 

between variants we compute the r2 between all SNPs within 1-Mb windows and consider r2 of less than 0.01 

between two variants to mean (approximate) independence. Next, from the full set of genetic variants for 

each phenotype, we create an independent set of SNPs where in order to keep all possible GWAS signals we 

sequentially find and retain the next most significant (lowest P-value) variant independent of all other variants 

in our independence set. After LD pruning an average of 2.2% (with range 1.9-3.4%) of genome-wide variants 

remained in our independence set for enrichment analysis (Supplementary Table 3). Next, we annotate each 



independent SNP and consider it as overlapping a functional element if (i) the SNP itself resides in such a 

genomic region or (ii) at least one of its proxies in LD (r2 ≥ 0.8) and within 500 Kb with it does. We include the 

latter as the association of a SNP in GWAS potentially tags the effect of other variants, which could underlie 

the observed association signal. The advantage of our greedy pruning over a P-value independent pruning is 

that we retain larger proportion of potentially causal variants (or tags of such SNPs). This is particularly 

advantageous for GWA studies with low power and more pronounced at more stringent pruning thresholds. 

  

Quantifying enrichment and statistical significance 

To find the enrichment of GWAS signals within a given functional annotation at a genome-wide significance P-

value threshold T, we use the following logistic regression model  

logit E(y)=1α+XTSSβTSS+XTAGSβTAGS+XAjβAj 

where yi = 1 if SNP i has GWAS P-value < T, and yi = 0 otherwise. 1 denotes an intercept term (a vector of 1’s) 

and XAj denotes a binary annotation covariate for annotation j. XTSS and XTAGS are categorical covariates 

denoting which quantile bin of distance to nearest TSS and number of LD proxies (r2≥0.8) a variant falls in (by 

default we use 5 quantiles for TSS distance and 15 for number of LD proxies). These terms are added to 

account for possible biases in the analysis due to the GWAS P-value distribution correlating to them, which 

may also non-randomly associate with functional data. Due to the discreteness of the number of proxies and 

the skewness of their distribution in the pruned data, exact quantile binning is not always possible, in which 

case we create a stepwise binning in which we iteratively find the first (Q-q)’th quantile from the remaining 

variants after having already created q (out of Q) bins and removed those variants from consideration. We 

calculate ORs and test for their significance at T=10-1, 10-2, …, 10-8 for all traits at each given threshold. 

 

Testing for significant association between an annotation and GWAS SNP status means testing for βAj=0 vs 

βAj∈ℜ. If, additionally, βAj>0, this denotes enrichment, otherwise we consider it to be a depletion. OR statistic 

is then calculated via the following equation βAj=log ORAj. 

 

Model selection for multiple annotations is done by (i) sorting annotations in order of significance from single 

annotation model; (ii) iteratively trying to add an annotation to the model if it significantly improved the model 

fit (p<0.05) given all other annotations in the model using the following model: 

logit E(y)=1α+XTSSβTSS+XTAGSβTAGS+XA1βA1+…+ XAjβAj 

And (iii) reporting the final model and tree or retained/discarded annotations. 

 

Multiple testing 

To account for multiple testing in the number of annotations used, we apply a Bonferroni correction for the 

number of independent tests carried out. Due to the nature of the data, annotations need not be (and are not 

in general) independent (e.g. biological replicates of the same cell types). Thus, correcting for all annotations 

by assuming independence would be extremely stringent in practice. Instead, we estimate the effective 

number of independent tests performed similarly to Galwey, 2009 17. More specifically, we take an 

independent subsample of SNPs and find the eigenvalues of the correlation matrix between all considered 

annotations and then find the effective number of independent test from equation 16 in Galwey, 2009. This 

results in at most 194 independent annotations out of a total of 424 for the DHS data (for the 29 phenotypes 

considered), to which we apply Bonferroni correction (p~2.6x10-4). Further details can be found in the 

Supplementary Note. Similarly, for the segmentation data a total of 25x127=3175 annotations were used, 

which resulted in p~3.3x10-5 after correcting for multiple testing on the effective number of independent 

annotations at the 5% significance level. Finally, for the histone modification data we used a threshold of p~4.7 

× 10-4. 

  

False positive rate 



To get an estimate of GARFIELD’s false positive rate, we simulated 1000 random annotations by mimicking the 

peak lengths and between peak distances from the ENCODE HepG2 DHS cell line. We then performed 

enrichment analysis for each annotation-trait pair from the 1,000 simulated annotations and 29 publicly 

available disease or quantitative trait GWAS studies. We estimated the false positive rate as the proportion of 

cell types showing significant enrichment for a given trait and further compared GARFIELD to each of six other 

tools for a subset of 21 of the traits with the necessary summary statistics for running all other approaches. 

 

Analysis with other software 

For the method comparison analysis, we used threshold of T<10-8 for GARFIELD, GREGOR and GoShifter and no 

threshold for fgwas and LDSC. Enrichment was defined as p<2.6x10-4 and an effect with positive direction 

(ORGARFIELD>1, EnrichmentLDSC>1, Estimatefgwas>1; GREGOR and GoShifter only test for enrichment and not for 

depletion so they were used without this constraint). 

 

fgwas 

We used full GWAS summary statistics (no LD pruning or tagging) against each annotation at a time as 

recommended by the fgwas user manual. Enrichment was defined by p-value<0.05 for the false positive rate 

estimation and p-value<2.6x10-4 for the real data analysis to correct for multiple testing. 

 

LD-score regression (LDSC) 

For each annotation we prepared .ldscore files. Then for each annotation/trait pair we run LD-score regression 

accounting for the baseline model. We obtained enrichment p-values based on the resulting regression 

coefficients as per the software documentation. Analysis was restricted to hapmap3 SNPs again as per the user 

manual recommendation. Enrichment was defined by p-value<0.05 for the false positive rate estimation and p-

value<2.6x10-4 for the real data analysis to correct for multiple testing. 

  

GoShifter 

We restricted the variants to those from the 1000 genomes project due to LD tagging in GoShifter using the 

same panel. For each study, we selected variants with GWAS P-value less than 10-8 and pruned them similarly 

to GARFIELD according to LD r2≥0.01. Testing was done using r2≥0.8 for LD tagging and 10,000 permutations. 

Enrichment was defined by p-value<0.05 for the false positive rate estimation and p-value < 2.6 × 10-4 for the 

real data analysis to correct for multiple testing. The p-value of enrichment was calculated as the proportion of 

permutations producing at least as extreme overlap as the observed SNP-annotation overlap. 

 

GREGOR 

We restricted the variants to those from the 1000 genomes project due to LD tagging in GREGOR using the 

same panel. For each study, we selected variants with GWAS P-value less than 10-8 and pruned them similarly 

to GARFIELD according to LD r2≥0.01. Testing was done using r2≥0.8 and 500 minimum neighbouring SNPs for 

each tested variant. Enrichment was defined by p-value<0.05 for the false positive rate estimation and p-

value<2.6x10-4 for the real data analysis to correct for multiple testing. 

 

GPA 

We used full GWAS summary statistics, with no LD pruning or tagging and used a maximum of 10,000 EM 

iterations. Enrichment was defined by p-value<0.05 and q1>q0 for the false positive rate estimation. 

 

CPU time estimates 

We compared total CPU usage times between different methods for the analyses of 21 traits and 424 

annotations and the respective average CPU times for a single trait/annotation pair. Analyses for each 

trait/annotation were run separately (whenever possible) on a compute cluster containing machines with the 

following architecture: Linux (x86-64) and 2x2.1 Ghz 16 core AMD 6378. Then cumulative run time over all 



traits/annotations and average run time for a single trait/annotation pair was reported (Supplementary Table 

6). 

 

Segmentation OR distribution and between trait sharing 

From all significantly enriched cell types per trait and segmentation state, we calculated the median OR and 

then plotted its distribution (on a log scale) across traits in order to estimate the per-state OR. Additionally, we 

took all significantly enriched cell types for pairs of annotations in order to remove the effect of power for 

annotation density and looked at the distribution of ORs for enhancer and promoter states versus those of 

transcription states. Finally, we counted the number of cell types per feature that were found to be 

significantly enriched (or depleted) in a single trait or shared between multiple traits. 

  

Software 

GARFIELD is available as a standalone tool and an R-package (see URLs). The tool consists of two main parts: (i) 

pruning and annotation of the GWA study of interest and (ii) calculating odds ratios and significance of the 

observed enrichment. Additionally, we provide scripts for further prioritization of annotations by iteratively 

adding annotations in a joint model if they improve the model fit (Chi-squared test). 

 

Reporting Summary 

Further information on research design in available in the Life Sciences Reporting Summary linked to this 

article. 

 

Data availability 

Web links for publicly available GWAS datasets and regulatory information databases are included in URLs 

section. Restriction of availability apply to blood cell indices GWASs from van der Harst et al. 33  and Gieger et 

al. 34, which have been obtained through the manuscripts authors. Any other data that supports the findings of 

this study is available from the corresponding author upon request. 

 

Code availability 

Custom code can be found at http://www.ebi.ac.uk/birney-srv/GARFIELD/ 
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Editorial summary:  
GARFIELD is a new approach that classifies genomic features related to phenotypes based on 
integrating GWAS signals with functional annotations. GARFIELD is used to characterize 
enrichment patterns for 29 traits integrated with ENCODE and Roadmap Epigenomics annotations.  


