44 research outputs found

    A Homolog of the Vaccinia Virus D13L Rifampicin Resistance Gene is in the Entomopoxvirus of the Parasitic wasp, Diachasmimorpha longicaudata

    Get PDF
    The parasitic wasp, Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), introduces an entomopoxvirus (DlEPV) into its Caribbean fruit fly host, Anastrepha suspensa. (Loew) (Diptera: Tephritidae), during oviposition. DlEPV has a 250–300 kb unipartite dsDNA genome, that replicates in the cytoplasm of the host's hemocytes, and inhibits the host's encapsulation response. The putative proteins encoded by several DlEPV genes are highly homologous with those of poxviruses, while others appear to be DlEPV specific. Here, a 2.34 kb sequence containing a 1.64 kb DlEPV open reading frame within a cloned 4.5 kb EcoR1 fragment (designated R1–1) is described from a DlEPV EcoRI genomic library. This open reading frame is a homolog of the vaccinia virus rifampicin resistance (rif) gene, D13L, and encodes a putative 546 amino acid protein. The DlEPV rif contains two EcoRV, two HindIII, one XbaI, and one DraII restriction sites, and upstream of the open reading frame the fragment also contains EcoRV, HindII, SpEI, and BsP106 sites. Early poxvirus transcription termination signals (TTTTTnT) occur 236 and 315 nucleotides upstream of the consensus poxvirus late translational start codon (TAAATG) and at 169 nucleotides downstream of the translational stop codon of the rif open reading frame. Southern blot hybridization of HindIII-, EcoRI-, and BamH1-restricted DlEPV genomic DNA probed with the labeled 4.5 kb insert confirmed the fidelity of the DNA and the expected number of fragments appropriate to the restriction endonucleases used. Pairwise comparisons between DlEPV amino acids and those of the Amsacta moorei, Heliothis armigera, and Melanoplus sanguinipes entomopoxviruses, revealed 46, 46, and 45 % similarity (identity + substitutions), respectively. Similar values (41–45%) were observed in comparisons with the chordopoxviruses. The mid portion of the DlEPV sequence contained two regions of highest conserved residues similar to those reported for H. armigera entomopoxvirus rifampicin resistance protein. Phylogenetic analysis of the amino acid sequences suggested that DlEPV arose from the same ancestral node as other entomopoxviruses but belongs to a separate clade from those of the grasshopper- infecting M. sanguinipes entomopoxvirus and from the Lepidoptera-infecting (Genus B or Betaentomopoxvirus) A. moorei entomopoxvirus and H. armigera entomopoxvirus. Interestingly, the DlEPV putative protein had only 3–26.4 % similarity with RIF-like homologs/orthologs found in other large DNA non-poxviruses, demonstrating its closer relationship to the Poxviridae. DlEPV remains an unassigned member of the Entomopoxvirinae (http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/index.htm) until its relationship to other diptera-infecting (Gammaentomopoxvirus or Genus C) entomopoxviruses can be verified. The GenBank accession number for the nucleotide sequence data reported in this paper is EF541029

    Population Genetics of Franciscana Dolphins (Pontoporia blainvillei): Introducing a New Population from the Southern Edge of Their Distribution

    Get PDF
    Due to anthropogenic factors, the franciscana dolphin, Pontoporia blainvillei, is the most threatened small cetacean on the Atlantic coast of South America. Four Franciscana Management Areas have been proposed: Espiritu Santo to Rio de Janeiro (FMA I), São Paulo to Santa Catarina (FMA II), Rio Grande do Sul to Uruguay (FMA III), and Argentina (FMA IV). Further genetic studies distinguished additional populations within these FMAs. We analyzed the population structure, phylogeography, and demographic history in the southernmost portion of the species range. From the analysis of mitochondrial DNA control region sequences, 5 novel haplotypes were found, totalizing 60 haplotypes for the entire distribution range. The haplotype network did not show an apparent phylogeographical signal for the southern FMAs. Two populations were identified: Monte Hermoso (MH) and Necochea (NC)+Claromecó (CL)+Río Negro (RN). The low levels of genetic variability, the relative constant size over time, and the low levels of gene flow may indicate that MH has been colonized by a few maternal lineages and became isolated from geographically close populations. The apparent increase in NC+CL+RN size would be consistent with the higher genetic variability found, since genetic diversity is generally higher in older and expanding populations. Additionally, RN may have experienced a recent split from CL and NC; current high levels of gene flow may be occurring between the latter ones. FMA IV would comprise four franciscana dolphin populations: Samborombón West+Samborombón South, Cabo San Antonio+Buenos Aires East, NC+CL+Buenos Aires Southwest+RN and MH. Results achieved in this study need to be taken into account in order to ensure the long-term survival of the species.Fil: Gariboldi, María Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Tunez, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Luján; ArgentinaFil: Dejean, Cristina Beatriz. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Ciencias Antropológicas. Sección Antropología Biológica; ArgentinaFil: Failla, Mauricio. Fundación Cethus; ArgentinaFil: Vitullo, Alfredo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Negri, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; ArgentinaFil: Cappozzo, Humberto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentin

    Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea

    Get PDF
    The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments

    Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters

    Get PDF
    We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness λ̂ >40 in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ∼ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness λ̂ =40 ⁠, this population makes up >12 per cent (97.5 percentile) of the total population. Extrapolating this to a measured richness λ̂ =20 yields >22 per cent (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ∼3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA

    Mechanics rules cell biology

    Get PDF
    Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction

    Sometimes Sperm Whales (Physeter macrocephalus) Cannot Find Their Way Back to the High Seas: A Multidisciplinary Study on a Mass Stranding

    Get PDF
    BACKGROUND: Mass strandings of sperm whales (Physeter macrocephalus) remain peculiar and rather unexplained events, which rarely occur in the Mediterranean Sea. Solar cycles and related changes in the geomagnetic field, variations in water temperature and weather conditions, coast geographical features and human activities have been proposed as possible causes. In December 2009, a pod of seven male sperm whales stranded along the Adriatic coast of Southern Italy. This is the sixth instance from 1555 in this basin. METHODOLOGY/PRINCIPAL FINDINGS: Complete necropsies were performed on three whales whose bodies were in good condition, carrying out on sampled tissues histopathology, virology, bacteriology, parasitology, and screening of veins looking for gas emboli. Furthermore, samples for age determination, genetic studies, gastric content evaluation, stable isotopes and toxicology were taken from all the seven specimens. The animals were part of the same group and determined by genetic and photo-identification to be part of the Mediterranean population. Causes of death did not include biological agents, or the "gas and fat embolic syndrome", associated with direct sonar exposure. Environmental pollutant tissue concentrations were relatively high, in particular organochlorinated xenobiotics. Gastric content and morphologic tissue examinations showed a prolonged starvation, which likely caused, at its turn, the mobilization of lipophilic contaminants from the adipose tissue. Chemical compounds subsequently entered the blood circulation and may have impaired immune and nervous functions. CONCLUSIONS/SIGNIFICANCE: A multi-factorial cause underlying this sperm whales' mass stranding is proposed herein based upon the results of postmortem investigations as well as of the detailed analyses of the geographical and historical background. The seven sperm whales took the same "wrong way" into the Adriatic Sea, a potentially dangerous trap for Mediterranean sperm whales. Seismic surveys should be also regarded as potential co-factors, even if no evidence of direct impact has been detected

    Seascape Genetics of a Globally Distributed, Highly Mobile Marine Mammal: The Short-Beaked Common Dolphin (Genus Delphinus)

    Get PDF
    Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna

    Phylogenetic relationships in southern African Bryde's whales inferred from mitochondrial DNA : further support for subspecies delineation between the two allopatric populations

    Get PDF
    Bryde’s whales (Balaenoptera edeni) are medium-sized balaenopterids with tropical and subtropical distribution. There is confusion about the number of species, subspecies and populations of Bryde’s whale found globally. Two eco-types occur off South Africa, the inshore and offshore forms, but with unknown relationship between them. Using the mtDNA control region we investigated the phylogenetic relationship of these populations to each other and other Bryde’s whale populations. Skin, baleen and bone samples were collected from biopsy-sampled individuals, strandings and museum collections. 97 sequences of 674 bp (bp) length were compared with published sequences of Bryde’s whales (n = 6) and two similar species, Omura’s (B. omurai) and sei (B. borealis) whales (n = 3). We found eight haplotypes from the study samples: H1–H4 formed a distinct, sister clade to pelagic populations of Bryde’s whales (B. brydei) from the South Pacific, North Pacific and Eastern Indian Ocean. H5–H8 were included in the pelagic clade. H1–H4 represented samples from within the distributional range of the inshore form. Pairwise comparisons of the percentage of nucleotide differences between sequences revealed that inshore haplotypes differed from published sequences of B. edeni by 4.7–5.5% and from B. brydei by 1.8–2.1%. Ten fixed differences between inshore and offshore sequences supported 100% diagnosability as subspecies. Phylogenetic analyses grouped the South African populations within the Bryde’s-sei whale clade and excluded B. edeni. Our data, combined with morphological and ecological evidence from previous studies, support subspecific classification of both South African forms under B. brydei and complete separation from B. edeni.PostprintPeer reviewe
    corecore