68 research outputs found
Creating symbolic cultures of consumption: an analysis of the content of sports wagering advertisements in Australia
Background: Since 2008, Australia has seen the rapid emergence of marketing for online and mobile sports wagering. Previous research from other areas of public health, such as tobacco and alcohol, has identified the range of appeal strategies these industries used to align their products with culturally valued symbols. However, there is very limited research that has investigated the tactics the sports wagering industry uses within marketing to influence the consumption of its products and services. Method: This study consisted of a mixed method interpretive content analysis of 85 sports wagering advertisements from 11 Australian and multinational wagering companies. Advertisements were identified via internet searches and industry websites. A coding framework was applied to investigate the extent and nature of symbolic appeal strategies within advertisements. Results: Ten major appeal strategies emerged from this analysis. These included sports fan rituals and behaviours; mateship; gender stereotypes; winning; social status; adventure, thrill and risk; happiness; sexualised imagery; power and control; and patriotism. Symbols relating to sports fan rituals and behaviours, and mateship, were the most common strategies used within the advertisements. Discussion/Conclusions: This research suggests that the appeal strategies used by the sports wagering industry are similar to those strategies adopted by other unhealthy commodity industries. With respect to gambling, analysis revealed that strategies are clearly targeted to young male sports fans. Researchers and public health practitioners should seek to better understand the impact of marketing on the normalisation of sports wagering for this audience segment, and implement strategies to prevent gambling harm
An Automated Phenotype-Driven Approach (GeneForce) for Refining Metabolic and Regulatory Models
Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of information about transcription factor—gene target interactions and computational methods to quickly refine models based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm's suggested refinements. The adjusted E. coli model showed improved accuracy (∼80.0%) for predicting growth phenotypes for 50,557 cases (knockout mutants tested for growth in different environmental conditions). In addition to identifying needed model corrections, the algorithm was used to identify native E. coli genes that, if over-expressed, would allow E. coli to grow in new environments. We envision that this approach will enable the rapid development and assessment of genome-scale metabolic and regulatory network models for less characterized organisms, as such models can be constructed from genome annotations and cis-regulatory network predictions
High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison
The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change
Comprehensive molecular characterization of the hippo signaling pathway in cancer
Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era
The southern supplier
[Abstract]: Physical processes in the Southern Ocean largely control nutrient distribution in the global marine environment, a finding that further highlights the influence of this oceanic region on Earth's climate
Remote focused encoding and decoding of electric fields through acoustoelectric heterodyning
Heterodyning of signals through physical multiplication is the building block of numerous modern technologies. Yet, it has been mostly limited to the interaction between electromagnetic fields. Here, we report that heterodyning occurs also between acoustic and electric fields in liquid electrolytes. We predict acoustoelectric heterodyning via computational field modelling, which accounts for the vector nature of the electrolytic acoustoelectric interaction. We then experimentally validate the spatiotemporal characteristics of the field emerging from the acoustoelectric heterodyning effect. The electric field distribution generated by the applied fields can be controlled by the propagating acoustic field and the orientation of the applied electric field, enabling the focusing of the resulting electric field at remote locations. Finally, we demonstrate detection of multi-frequency ionic currents at a distant focal location via signal demodulation using pressure waves in electrolytic liquids. As such, acoustoelectric heterodyning could open possibilities in non-invasive biomedical and bioelectronics applications
Recommended from our members
Video game training enhances cognitive control in older adults
Cognitive control is defined by a set of neural processes that allow us to interact with our complex environment in a goal-directed manner. Humans regularly challenge these control processes when attempting to simultaneously accomplish multiple goals (mul
- …