102 research outputs found

    Health System Resource Gaps and Associated Mortality from Pandemic Influenza across Six Asian Territories

    Get PDF
    BACKGROUND: Southeast Asia has been the focus of considerable investment in pandemic influenza preparedness. Given the wide variation in socio-economic conditions, health system capacity across the region is likely to impact to varying degrees on pandemic mitigation operations. We aimed to estimate and compare the resource gaps, and potential mortalities associated with those gaps, for responding to pandemic influenza within and between six territories in Asia. METHODS AND FINDINGS: We collected health system resource data from Cambodia, Indonesia (Jakarta and Bali), Lao PDR, Taiwan, Thailand and Vietnam. We applied a mathematical transmission model to simulate a "mild-to-moderate" pandemic influenza scenario to estimate resource needs, gaps, and attributable mortalities at province level within each territory. The results show that wide variations exist in resource capacities between and within the six territories, with substantial mortalities predicted as a result of resource gaps (referred to here as "avoidable" mortalities), particularly in poorer areas. Severe nationwide shortages of mechanical ventilators were estimated to be a major cause of avoidable mortalities in all territories except Taiwan. Other resources (oseltamivir, hospital beds and human resources) are inequitably distributed within countries. Estimates of resource gaps and avoidable mortalities were highly sensitive to model parameters defining the transmissibility and clinical severity of the pandemic scenario. However, geographic patterns observed within and across territories remained similar for the range of parameter values explored. CONCLUSIONS: The findings have important implications for where (both geographically and in terms of which resource types) investment is most needed, and the potential impact of resource mobilization for mitigating the disease burden of an influenza pandemic. Effective mobilization of resources across administrative boundaries could go some way towards minimizing avoidable deaths

    The Airborne Metagenome in an Indoor Urban Environment

    Get PDF
    The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens

    Washing our hands of the congenital cytomegalovirus disease epidemic

    Get PDF
    BACKGROUND: Each year in the United States, an estimated 40,000 children are born with congenital cytomegalovirus (CMV) infection, causing an estimated 400 deaths and leaving approximately 8000 children with permanent disabilities such as hearing or vision loss, or mental retardation. More children are affected by serious CMV-related disabilities than by several better-known childhood maladies, including Down syndrome, fetal alcohol syndrome, and spina bifida. DISCUSSION: Congenital CMV is a prime target for prevention not only because of its substantial disease burden but also because the biology and epidemiology of CMV suggest that there are ways to reduce viral transmission. Because exposure to the saliva or urine of young children is a major cause of CMV infection among pregnant women, it is likely that good personal hygiene, especially hand-washing, can reduce the risk of CMV acquisition. Experts agree that such measures are likely to be efficacious (i.e., they will work if consistently followed) and the American College of Obstetricians and Gynecologists recommends that physicians counsel pregnant women about preventing CMV acquisition through careful attention to hygiene. However, because of concerns about effectiveness (i.e., Will women consistently follow hygienic practices as the result of interventions?), the medical and public health communities appear reluctant to embrace primary CMV prevention via improved hygienic practices, and educational interventions are rare. Current data on the effectiveness of such measures in preventing CMV infection are promising, but limited. There is strong evidence, however, that educational interventions can prevent other infectious diseases with similar transmission modes, suggesting that effective interventions can also be found for CMV. Until a CMV vaccine becomes available, effective educational interventions are needed to inform women about congenital CMV prevention. SUMMARY: Perhaps no single cause of birth defects and developmental disabilities in the United States currently provides greater opportunity for improved outcomes in more children than congenital CMV. Given the present state of knowledge, women deserve to be informed about how they can reduce their risk of CMV infection during pregnancy, and trials are needed to identify effective educational interventions

    Tracking virus outbreaks in the twenty-first century

    Get PDF
    Emerging viruses have the potential to impose substantial mortality, morbidity and economic burdens on human populations. Tracking the spread of infectious diseases to assist in their control has traditionally relied on the analysis of case data gathered as the outbreak proceeds. Here, we describe how many of the key questions in infectious disease epidemiology, from the initial detection and characterization of outbreak viruses, to transmission chain tracking and outbreak mapping, can now be much more accurately addressed using recent advances in virus sequencing and phylogenetics. We highlight the utility of this approach with the hypothetical outbreak of an unknown pathogen, 'Disease X', suggested by the World Health Organization to be a potential cause of a future major epidemic. We also outline the requirements and challenges, including the need for flexible platforms that generate sequence data in real-time, and for these data to be shared as widely and openly as possible

    A Model for Experimental Cerebral Arterial Spasm

    No full text

    Elasticity of the spinal cord dura in the dog

    No full text

    Effect of trauma dose on spinal cord edema

    No full text
    corecore