296 research outputs found

    Clood CBR: towards microservices oriented case-based reasoning.

    Get PDF
    CBR applications have been deployed in a wide range of sectors, from pharmaceuticals; to defence and aerospace to IoT and transportation, to poetry and music generation; for example. However, a majority of these have been built using monolithic architectures which impose size and complexity constraints. As such these applications have a barrier to adopting new technologies and remain prohibitively expensive in both time and cost because changes in frameworks or languages affect the application directly. To address this challenge, we introduce a distributed and highly scalable generic CBR system, Clood, which is based on a microservices architecture. This splits the application into a set of smaller, interconnected services that scale to meet varying demands. Experimental results show that our Clood implementation retrieves cases at a fairly consistent rate as the casebase grows by several orders of magnitude and was over 3,700 times faster than a comparable monolithic CBR system when retrieving from half a million cases. Microservices are cloud-native architectures and with the rapid increase in cloud-computing adoption, it is timely for the CBR community to have access to such a framework

    Order by disorder and spiral spin liquid in frustrated diamond lattice antiferromagnets

    Get PDF
    Frustration refers to competition between different interactions that cannot be simultaneously satisfied, a familiar feature in many magnetic solids. Strong frustration results in highly degenerate ground states, and a large suppression of ordering by fluctuations. Key challenges in frustrated magnetism are characterizing the fluctuating spin-liquid regime and determining the mechanism of eventual order at lower temperature. Here, we study a model of a diamond lattice antiferromagnet appropriate for numerous spinel materials. With sufficiently strong frustration a massive ground state degeneracy develops amongst spirals whose propagation wavevectors reside on a continuous two-dimensional ``spiral surface'' in momentum space. We argue that an important ordering mechanism is entropic splitting of the degenerate ground states, an elusive phenomena called order-by-disorder. A broad ``spiral spin-liquid'' regime emerges at higher temperatures, where the underlying spiral surface can be directly revealed via spin correlations. We discuss the agreement between these predictions and the well characterized spinel MnSc2S4

    Efficacy and adverse effects of intravenous lignocaine therapy in fibromyalgia syndrome

    Get PDF
    BACKGROUND: To investigate the effects of intravenous lignocaine infusions (IV lignocaine) in fibromyalgia. METHODS: Prospective study of the adverse effects of IV lignocaine in 106 patients with fibromyalgia; retrospective questionnaire study of the efficacy of IV lignocaine in 50 patients with fibromyalgia. RESULTS: Prospective study: Two major (pulmonary oedema and supraventricular tachycardia) and 42 minor side-effects were reported. None had long-term sequelae. The commonest was hypotension (17 cases). Retrospective study: Pain and a range of psychosocial measures (on single 11-point scales) improved significantly after treatment. There was no effect of the treatment on work status. The average duration of pain relief after the 6-day course of treatment was 11.5 ± 6.5 weeks. CONCLUSIONS: Intravenous lignocaine appears to be both safe and of benefit in improving pain and quality of life for patients with fibromyalgia. This needs to be confirmed in prospective randomised controlled trials

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    Structure of the St. Louis encephalitis virus postfusion envelope trimer

    Get PDF
    St. Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus responsible for several human encephalitis outbreaks over the last 80 years. Mature flavivirus virions are coated with dimeric envelope (E) proteins that mediate attachment and fusion with host cells. E is a class II fusion protein, the hallmark of which is a distinct dimer-to-trimer rearrangement that occurs upon endosomal acidification and insertion of hydrophobic fusion peptides into the endosomal membrane. Herein, we report the crystal structure of SLEV E in the posfusion trimer conformation. The structure revealed specific features that differentiate SLEV E from trimers of related flavi- and alphaviruses. SLEV E fusion loops have distinct intermediate spacing such that they are positioned further apart than previously observed in flaviviruses but closer together than Semliki Forest virus, an alphavirus. Domains II and III (DII and DIII) of SLEV E also adopt different angles relative to DI, which suggests that the DI-DII joint may accommodate spheroidal motions. However, trimer interfaces are well conserved among flaviviruses, so it is likely the differences observed represent structural features specific to SLEV function. Analysis of surface potentials revealed a basic platform underneath flavivirus fusion loops that may interact with the anionic lipid head groups found in membranes. Taken together, these results highlight variations in E structure and assembly that may direct virus-specific interactions with host determinants to influence pathogenesis

    Search for Nucleon Decay with Final States l+ eta, nubar eta, and nubar pi+,0 Using Soudan 2

    Full text link
    We have searched for nucleon decay into five two-body final states using a 4.4 kiloton-year fiducial exposure of the Soudan 2 iron tracking calorimeter. For proton decay into the fully visible final states mu+ eta and e+ eta, we observe zero and one event, respectively, that satisfy our search criteria for nucleon decay. The lifetime lower limits (tau/B) thus implied are 89 x 10^30 years and 81 x 10^30 years at 90% confidence level. For neutron decay into nubar eta, we obtain the lifetime lower limit 71 x 10^30 years. Limits are also reported for neutron decay into nubar pi0, and for proton decay into nubar pi+.Comment: 24 pages, 9 figures, 3 table

    Analysis of synonymous codon usage in Hepatitis A virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis A virus is the causative agent of type A viral hepatitis, which causes occasional acute hepatitis. Nevertheless, little information about synonymous codon usage pattern of HAV genome in the process of its evolution is available. In this study, the key genetic determinants of codon usage in HAV were examined.</p> <p>Results</p> <p>The overall extent of codon usage bias in HAV is high in <it>Picornaviridae</it>. And the patterns of synonymous codon usage are quite different in HAV genomes from different location. The base composition is closely correlated with codon usage bias. Furthermore, the most important determinant that results in such a high codon bias in HAV is mutation pressure rather than natural selection.</p> <p>Conclusions</p> <p>HAV presents a higher codon usage bias than other members of <it>Picornaviridae</it>. Compositional constraint is a significant element that influences the variation of synonymous codon usage in HAV genome. Besides, mutation pressure is supposed to be the major factor shaping the hyperendemic codon usage pattern of HAV.</p

    Turing patterns on networks

    Full text link
    Turing patterns formed by activator-inhibitor systems on networks are considered. The linear stability analysis shows that the Turing instability generally occurs when the inhibitor diffuses sufficiently faster than the activator. Numerical simulations, using a prey-predator model on a scale-free random network, demonstrate that the final, asymptotically reached Turing patterns can be largely different from the critical modes at the onset of instability, and multistability and hysteresis are typically observed. An approximate mean-field theory of nonlinear Turing patterns on the networks is constructed.Comment: 4 pages, 4 figure

    Recombination between Polioviruses and Co-Circulating Coxsackie A Viruses: Role in the Emergence of Pathogenic Vaccine-Derived Polioviruses

    Get PDF
    Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence

    The Cryptosporidium parvum Kinome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the <it>Cryptosporidium parvum </it>kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase.</p> <p>Results</p> <p>The <it>C</it>. <it>parvum </it>kinome comprises over 70 members, some of which may be promising drug targets. These <it>C. parvum </it>protein kinases include members in the AGC, Atypical, CaMK, CK1, CMGC, and TKL groups; however, almost 35% could only be classified as OPK (other protein kinases). In addition, about 25% of the kinases identified did not have any known orthologues outside of <it>Cryptosporidium spp</it>. Comparison of specific kinases with their <it>Plasmodium falciparum </it>and <it>Toxoplasma gondii </it>orthologues revealed some distinct characteristics within the <it>C. parvum </it>kinome, including potential targets and opportunities for drug design. Structural and biochemical analysis of 4 representatives of the CaMK group and a MAP kinase confirms features that may be exploited in inhibitor design. Indeed, screening <it>Cp</it>CDPK1 against a library of kinase inhibitors yielded a set of the pyrazolopyrimidine derivatives (PP1-derivatives) with IC<sub>50 </sub>values of < 10 nM. The binding of a PP1-derivative is further described by an inhibitor-bound crystal structure of <it>Cp</it>CDPK1. In addition, structural analysis of <it>Cp</it>CDPK4 identified an unprecedented Zn-finger within the CDPK kinase domain that may have implications for its regulation.</p> <p>Conclusions</p> <p>Identification and comparison of the <it>C. parvum </it>protein kinases against other parasitic kinases shows how orthologue- and family-based research can be used to facilitate characterization of promising drug targets and the search for new drugs.</p
    • …
    corecore