653 research outputs found
Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine
The variation in antibody response to vaccination likely involves small contributions of numerous genetic variants, such as single-nucleotide polymorphisms (SNPs), which interact in gene networks and pathways. To accumulate the bits of genetic information relevant to the phenotype that are distributed throughout the interaction network, we develop a network eigenvector centrality algorithm (SNPrank) that is sensitive to the weak main effects, gene–gene interactions and small higher-order interactions through hub effects. Analogous to Google PageRank, we interpret the algorithm as the simulation of a random SNP surfer (RSS) that accumulates bits of information in the network through a dynamic probabilistic Markov chain. The transition matrix for the RSS is based on a data-driven genetic association interaction network (GAIN), the nodes of which are SNPs weighted by the main-effect strength and edges weighted by the gene–gene interaction strength. We apply SNPrank to a GAIN analysis of a candidate-gene association study on human immune response to smallpox vaccine. SNPrank implicates a SNP in the retinoid X receptor α (RXRA) gene through a network interaction effect on antibody response. This vitamin A- and D-signaling mediator has been previously implicated in human immune responses, although it would be neglected in a standard analysis because its significance is unremarkable outside the context of its network centrality. This work suggests SNPrank to be a powerful method for identifying network effects in genetic association data and reveals a potential vitamin regulation network association with antibody response
Association of early life factors and acute lymphoblastic leukaemia in childhood: historical cohort study
In a historical cohort study of all singleton live births in Northern Ireland from 1971–86 (n=434 933) associations between early life factors and childhood acute lymphoblastic leukaemia were investigated. Multivariable analyses showed a positive association between high paternal age (⩾35 years) and acute lymphoblastic leukaemia (relative risk=1.49; 95% confidence interval (CI)=0.96–2.31) but no association with maternal age. High birth weight (⩾3500 g) was positively associated with acute lymphoblastic leukaemia (relative risk=1.66; 95% CI=1.18–2.33). Children of mothers with a previous miscarriage or increased gestation (⩾40 weeks) had reduced risks of ALL (respective relative risks=0.49; 95% CI=0.29–0.80, and 0.67; 95% CI=0.48–0.94). Children born into more crowded households (⩾1 person per room) had substantially lower risks than children born into less crowded homes with also some evidence of a lower risk for children born into homes with three adults (relative risks=0.56; 95% CI=0.35–0.91 and 0.58; 95% CI=0.21–1.61 respectively). These findings indicate that several early life factors, including living conditions in childhood and maternal miscarriage history, influence risk of acute lymphoblastic leukaemia in childhood
Recommended from our members
Overcoming hurdles to intervention studies with autistic children with profound communication difficulties and their families.
Autistic children who speak few or no words or who have an intellectual disability are the most in need of new understandings and treatments, but the most often left out of the research that can bring these benefits. Researchers perceive difficulties around compliance with instructions, testing, challenging behaviours and family stress. Although research with these children can indeed be difficult, their continuing exclusion is unethical and unacceptable. Drawing on our experiences testing a possible treatment for children with profound autism, we provide 10 practical guidelines related to (1) interacting physically, (2) combining play and testing, (3) responding to challenging behaviour, (4) finding suitable tests, (5) relationships with parents, (6) relationships with siblings, (7) involving stakeholders, (8) planning the testing times, (9) the role of the clinical supervisor and (10) recruiting and retaining participants. We hope that these guidelines will prepare and embolden other research teams to work with profoundly autistic children, ending their historical exclusion from research. These guidelines also could be useful for conducting research with children with intellectual disabilities
Three little pieces for computer and relativity
Numerical relativity has made big strides over the last decade. A number of
problems that have plagued the field for years have now been mostly solved.
This progress has transformed numerical relativity into a powerful tool to
explore fundamental problems in physics and astrophysics, and I present here
three representative examples. These "three little pieces" reflect a personal
choice and describe work that I am particularly familiar with. However, many
more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation:
100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech
Republic. To appear in the Proceedings (Edition Open Access). Collects
results appeared in journal articles [72,73, 122-124
Image informatics strategies for deciphering neuronal network connectivity
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
Coevolution of Male and Female Genital Morphology in Waterfowl
Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5–>40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity in female genital morphology in waterfowl and describe variation vaginal morphology that is unprecedented in birds. This variation comprises two anatomical novelties: (i) dead end sacs, and (ii) clockwise coils. These vaginal structures appear to function to exclude the intromission of the counter-clockwise spiralling male phallus without female cooperation. A phylogenetically controlled comparative analysis of 16 waterfowl species shows that the degree of vaginal elaboration is positively correlated with phallus length, demonstrating that female morphological complexity has co-evolved with male phallus length. Intersexual selection is most likely responsible for the observed coevolution, although identifying the specific mechanism is difficult. Our results suggest that females have evolved a cryptic anatomical mechanism of choice in response to forced extra-pair copulations
Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea
Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems
Covert Waking Brain Activity Reveals Instantaneous Sleep Depth
The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep
Diversity and Seasonal Dynamics of an Assemblage of Sarcophagid Diptera in a Gradient of Urbanization
Sarcophagid species inhabiting different locations in a rural-urban gradient were surveyed in the east central Argentine district of the Almirante Brown, Buenos Aires province. The main objectives of this research were to identify the most prevalent sarcophagid species and to describe community richness and diversity according to the degree of urbanization and the environmental variables measured in three locations within a rural-urban gradient sampled during two years from May 2005 to April 2007. Spatial and seasonal variations were the main factors involved in structuring the sarcophagid communities. Diversity was lower in urbanized areas than in rural ones. Bait and microhabitat preferences (sunny or shady places) and seasonal fluctuations were described for 17 sarcophagid species
Impacts of climate change on plant diseases – opinions and trends
There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods
- …