46 research outputs found

    Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome

    Get PDF
    YesHuman identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.The Technology Commercialization Innovation Program (Contracts #121668, #132043) of the Utah Governors Office of Commercial Development, the Scholarship Activitie

    B-cell development in the gut

    No full text

    A Mixed Self: The Role of Symbiosis in Development

    Get PDF
    Since the 1950s, the common view of development has been internalist: development is seen as the result of the unfolding of potentialities already present in the egg cell. In this paper I show that this view is incorrect, because of the crucial influence of the environment on development. I focus on a fascinating example, that of the role played by symbioses in development, especially bacterial symbioses, a phenomenon found in virtually all organisms (plants, invertebrates, vertebrates). I claim that we must consequently modify our conception of the boundaries of the developing entity, and I show how immunology can help us in accomplishing this task. I conclude that the developing entity encompasses many elements traditionally seen as “foreign”, while I reject the idea that there is no possible distinction between the organism and its environment

    Nucleic acid recognition and antiviral activity of 1,4-substituted terphenyl compounds mimicking all faces of the HIV-1 Rev protein positively-charged α-helix

    Get PDF
    Small synthetic molecules mimicking the three-dimensional structure of α-helices may find applications as inhibitors of therapeutically relevant protein-protein and protein-nucleic acid interactions. However, the design and use of multi-facial helix mimetics remains in its infancy. Here we describe the synthesis and application of novel bilaterally substituted p-terphenyl compounds containing positively-charged aminoalkyl groups in relative 1,4 positions across the aromatic scaffold. These compounds were specifically designed to mimic all faces of the arginine-rich α-helix of the HIV-1 protein Rev, which forms deeply embedded RNA complexes and plays key roles in the virus replication cycle. Two of these molecules recognized the Rev site in the viral RNA and inhibited the formation of the RRE-Rev ribonucleoprotein complex, a currently unexploited target in HIV chemotherapy. Cellular assays revealed that the most active compounds blocked HIV-1 replication with little toxicity, and likely exerted this effect through a multi-target mechanism involving inhibition of viral LTR promoter-dependent transcription and Rev function. Further development of this scaffold may open new avenues for targeting nucleic acids and may complement current HIV therapies, none of which involve inhibitors interfering with the gene regulation processes of the virus.This project was supported by Ministerio de Economía y Competitividad of Spain (Grants BFU2012–30770 and BFU2015–65103-R to J.G.; CTQ2013-43310 and CTQ2017-84249-P to S.F. and FIS PI16CIII/0034 to J.A.; and FPU15/01485 predoctoral fellowship to D.M.S.), Generalitat Valenciana of Spain (FPA/2015/014 and APOTIP/2016/A007 to J.G. and PROMETEOII/2014/073 to S.F.), the Spanish AIDS Research Network (RD16CIII/0002/0001-ISCIII–FEDER to J.A.), Universidad Católica de Valencia (2017-114-001 and 2018-114-001 to J.G.), and European AIDS Vaccine Initiative 2020 (ID 681137 to J.A.). The authors thank Ainhoa Sánchez for carrying out initial fluorescence anisotropy experiments, Ángel Cantero-Camacho for designing and testing the primers used to amplify LTRc, and Jerónimo Bravo and Antonio Pineda for facilitating access to ITC equipment. Plasmid pLTR(HTLV)-luc (pGL4.20-U3R) was kindly donated by Thomas Kress.S

    SUMOylation of the GTPase Rac1 is required for optimal cell migration

    No full text
    The Rho-like GTPase Rac1 induces cytoskeletal rearrangements required for cell migration. Rac activity is regulated through a number of mechanisms, including control of nucleotide exchange and hydrolysis, regulation of subcellular localization, or modulation of protein expression levels1-3. Here, we identify the Small Ubiquitin-like MOdifier (SUMO) E3-ligase, PIAS3, as a new Rac1 interactor required for increased Rac activity and optimal cell migration in response to Hepatocyte Growth Factor (HGF) signalling. We show that Rac1 can be conjugated to SUMO-1 in response to HGF and that SUMOylation is enhanced by PIAS3. Moreover, we identify non-consensus sites within the polybasic region of Rac1 as the main locations for SUMO conjugation. We demonstrate that PIAS3-mediated SUMOylation of Rac1 controls its GTP-bound levels and its ability to stimulate lamellipodia, cell migration and invasion. This is the first time that a Ras superfamily member is found to be SUMOylated, providing a new insight into the regulation of these critical mediators of cell behaviour. Moreover, our data reveal a previously undescribed role for SUMO in the regulation of cell migration and invasion
    corecore