366 research outputs found

    Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector

    Get PDF
    After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"

    Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Barts and The London Trustees Studentship (SM), Marie Curie fellowships (MB, JD), Arthritis Research UK career development fellowship (JW), William Harvey Research Foundation grant (JW/RSS), Kidney Research UK fellowship (NSAP), Barts and The London Vacation Scholarship (ISN), Wellcome Trust senior fellowship (DWG), and a Wellcome Trust career development fellowship (RSS). This work forms part of the research themes contributing to the translational research portfolio of Barts and The London Cardiovascular Biomedical Research Unit, which is supported and funded by National Institute for Health Researc

    Mechanism of subunit interaction at ketosynthase-dehydratase junctions in trans-AT polyketide synthases

    Get PDF
    Modular polyketide synthases (PKSs) produce numerous structurally complex natural products with diverse applications in medicine and agriculture. They typically consist of several multienzyme subunits that utilize structurally-defined docking domains (DDs) at their N- and C-termini to ensure correct assembly into functional multi-protein complexes. Here we report a fundamentally different mechanism for subunit assembly in trans-AT modular PKSs at the junction between ketosynthase (KS) and dehydratase (DH) domains. This involves direct interaction of a largely unstructured docking domain (DD) at the C-terminus of the KS with the surface of the downstream DH. Acyl transfer assays and mechanism-based cross-linking established that the DD is required for the KS to communicate with the acyl carrier protein appended to the DH. Two distinct regions for binding of the DD to the DH were identified using NMR spectroscopy, carbene foot-printing and mutagenesis, providing a foundation for future elucidation of the molecular basis for interaction specificity

    Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania.

    Get PDF
    Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection

    Resolution of inflammation: a new therapeutic frontier

    Get PDF
    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field

    The impact of a standardised intramuscular sedation protocol for acute behavioural disturbance in the emergency department

    Get PDF
    Background: Acute behavioural disturbance (ABD) is an increasing problem in emergency departments. This study aimed to determine the impact of a structured intramuscular (IM) sedation protocol on the duration of ABD in the emergency department. Methods: A historical control study was undertaken comparing 58 patients who required physical restraint and parenteral sedation with the structured IM sedation protocol, to 73 historical controls treated predominantly by intravenous sedation, according to individual clinician preference. The primary outcome was the duration of the ABD defined as the time security staff were required. Secondary outcomes were the requirement for additional sedation, drug related-adverse effects and patient and staff injuries. Results: The median duration of the ABD in patients with the new sedation protocol was 21 minutes (IQR: 15 to 35 minutes; Range: 5 to 78 minutes) compared to a median duration of 30 minutes (IQR: 15 to 50 minutes; Range: 5 to 135 minutes) in the historical controls which was significantly different (p = 0.03). With IM sedation only 27 of 58 patients (47%; 95% CI: 34% to 60%) required further sedation compared to 64 of 73 historical controls (88%; 95%CI: 77% to 94%). There were six (10%) drug-related adverse events with the new IM protocol [oxygen desaturation (5), oxygen desaturation/airway obstruction (1)] compared to 10 (14%) in the historical controls [oxygen desaturation (5), hypoventilation (4) and aspiration (1)]. Injuries to staff occurred with three patients using the new sedation protocol and in seven of the historical controls. Two patients were injured during the new protocol and two of the historical controls. Conclusion: The use of a standardised IM sedation protocol was simple, more effective and as safe for management of ABD compared to predominantly intravenous sedation

    Gene Expression Patterns of Dengue Virus-Infected Children from Nicaragua Reveal a Distinct Signature of Increased Metabolism

    Get PDF
    BackgroundInfection with dengue viruses (DENV) leads to a spectrum of disease outcomes. The pathophysiology of severe versus non-severe manifestations of DENV infection may be driven by host responses, which could be reflected in the transcriptional profiles of peripheral blood immune cells.Methodology/principal findingsWe conducted genome-wide microarray analysis of whole blood RNA from 34 DENV-infected children in Nicaragua collected on days 3-6 of illness, with different disease manifestations. Gene expression analysis identified genes that are differentially regulated between clinical subgroups. The most striking transcriptional differences were observed between dengue patients with and without shock, especially in the expression of mitochondrial ribosomal proteins associated with protein biosynthesis. In the dengue hemorrhagic fever patients, one subset of differentially expressed genes encode neutrophil-derived anti-microbial peptides associated with innate immunity. By performing a meta-analysis of our dataset in conjunction with previously published datasets, we confirmed that DENV infection in vivo is associated with large changes to protein and nucleic acid metabolism. Additionally, whereas in vitro infection leads to an increased interferon signature, this was not consistently observed from in vivo patient samples, suggesting that the interferon response in vivo is relatively transient and was no longer observed by days 3-6 of illness.Conclusions/significanceThese data highlight important differences between different manifestations of severity during DENV infection as well as identify some commonalities. Compilation of larger datasets in the future across multiple studies, as we have initiated in this report, may well lead to better prediction of disease manifestation via a systems biology approach

    Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. <it>Calanus sinicus </it>dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies.</p> <p>Results</p> <p>The mitochondrial genome of <it>C. sinicus </it>is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of <it>C. sinicus </it>include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes <it>atp6 </it>and <it>atp8 </it>relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 <it>C. sinicus </it>mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci.</p> <p>Conclusion</p> <p>The occurrence of the <it>circular subgenomic fragment </it>during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of <it>C. sinicus </it>during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for resolving phylogenetic issues concerning copepods. The variable site maps of <it>C. sinicus </it>mitogenomes provide a solid foundation for population genetic studies.</p

    MPP+-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress

    Get PDF
    Accumulating evidence suggests that endogenous dopamine may act as a neurotoxin and thereby participate in the pathophysiology of Parkinson’s disease (PD). Cyclooxygenase-2 (COX-2) has been implicated in the pathogenesis of PD due to its ability to generate reactive oxygen species (ROS). Inhibition of COX-2 leads to neuroprotection by preventing the formation of dopamine-quinone. In this study, we examined whether dopamine mediates 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in primary ventral mesencephalic (VM) neurons, an in vitro model of PD, and if so, whether the protective effects of COX-2 inhibitors on dopamine mediated MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis result from the reduction of ROS. Reserpine, a dopamine-depleting agent, significantly reduced VM neurotoxicity induced by MPP+, whereas dopamine had an additive effect on MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis. However, inhibition of COX-2 by a selective COX-2 inhibitor (DFU) or ibuprofen significantly attenuated MPP+-induced VM cell toxicity and VM dopaminergic cell apoptosis, which was accompanied by a decrease in ROS production in VM dopaminergic neurons. These results suggest that dopamine itself mediates MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis in the presence of COX-2
    corecore