580 research outputs found

    Verdeckungsmuster mit kurzen signalen

    Get PDF

    Modeling off-frequency binaural masking for short- and long-duration signals

    Get PDF
    Experimental binaural masking-pattern data are presented together with model simulations for 12- and 600-ms signals. The masker was a diotic 11-Hz wide noise centered on 500 Hz. The tonal signal was presented either diotically or dichotically (180° interaural phase difference) with frequencies ranging from 400 to 600 Hz. The results and the modeling agree with previous data and hypotheses; simulations with a binaural model sensitive to monaural modulation cues show that the effect of duration on off-frequency binaural masking-level differences is mainly a result of modulation cues which are only available in the monaural detection of long signals

    Reduced use of antimicrobials after vaccination of pigs against porcine proliferative enteropathy in a Danish SPF herd

    Get PDF
    The present study explored whether the use of group medication with antibiotics in a Danish pig herd was reduced after vaccination of the pigs against proliferative enteropathy (PE) caused by Lawsonia intracellularis. 7900 pigs originating from a single commercial sow herd were vaccinated against L. intracellularis, whereas 7756 pigs were kept as non-vaccinated controls. The pigs were included batch-wise in the study with every second batch being vaccinated. In the vaccinated batches, the consumption of oxytetracykline to treat PE was reduced by 79%, with a significantly lower number of pigs being treated (P < 0.0001). Vaccination also resulted in a highly significant improvement of average daily weight gain (+ 46 g/day; P = 9.55 × 10-31) and carcase weight (+ 1.25 kg; P = 4.54 × 10-05) as well as a shortened fattening period (-8 days; P = 2.01 × 10-45)

    Dynamics of trimming the content of face representations for categorization in the brain

    Get PDF
    To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) Over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) Concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g. the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened eyes in 'fear'; the detailed mouth in 'happy'). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300

    Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets

    Get PDF
    The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal of Astrobiology (2019

    Polarized recombination of acoustically transported carriers in GaAs nanowires

    Get PDF
    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport

    Proximity curves for potential-based clustering

    Get PDF
    YesThe concept of proximity curve and a new algorithm are proposed for obtaining clusters in a finite set of data points in the finite dimensional Euclidean space. Each point is endowed with a potential constructed by means of a multi-dimensional Cauchy density, contributing to an overall anisotropic potential function. Guided by the steepest descent algorithm, the data points are successively visited and removed one by one, and at each stage the overall potential is updated and the magnitude of its local gradient is calculated. The result is a finite sequence of tuples, the proximity curve, whose pattern is analysed to give rise to a deterministic clustering. The finite set of all such proximity curves in conjunction with a simulation study of their distribution results in a probabilistic clustering represented by a distribution on the set of dendrograms. A two-dimensional synthetic data set is used to illustrate the proposed potential-based clustering idea. It is shown that the results achieved are plausible since both the ‘geographic distribution’ of data points as well as the ‘topographic features’ imposed by the potential function are well reflected in the suggested clustering. Experiments using the Iris data set are conducted for validation purposes on classification and clustering benchmark data. The results are consistent with the proposed theoretical framework and data properties, and open new approaches and applications to consider data processing from different perspectives and interpret data attributes contribution to patterns

    Successful interdisciplinary management of the misdeployment of two self-expanding stents into the internal carotid artery: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>With the widespread use of carotid artery stenting, previously unknown technical mistakes of this treatment modality are now being encountered. There are multiple strategies for the treatment of in-stent restenosis. With regard to surgical management, endarterectomy and patch plasty are favored. To the best of our knowledge, this report is the first description of a complete stent removal by the eversion technique.</p> <p>Case presentation</p> <p>We report the case of a 63-year-old Caucasian man with misdeployment of two stents into his stenotic proximal internal carotid artery, resulting in a high-grade mechanical obstruction of the internal carotid artery lumen. With the contralateral internal carotid artery already occluded and associated stenoses of both proximal and distal vertebral arteries, an interdisciplinary therapeutic concept was applied. Bilateral balloon angioplasty and stenting of the proximal and distal stenotic vertebral arteries were carried out to provide sufficient posterior collateral blood flow, followed by successful surgical stentectomy and carotid endarterectomy using the eversion technique. Duplex scanning and neurological assessments were normal over a 12-month follow-up period.</p> <p>Conclusions</p> <p>Interdisciplinary treatment is a recommended option to protect patients from further impairment. Further evaluation in larger studies is highly recommended.</p
    • …
    corecore