137 research outputs found

    The Incidence of Adjacent Segment Degeneration after Cervical Disc Arthroplasty (CDA): A Meta Analysis of Randomized Controlled Trials

    Get PDF
    Cervical disc arthroplasty is being used as an alternative degenerative disc disease treatment with fusion of the cervical spine in order to preserve motion. However, whether replacement arthoplasty in the spine achieves its primary patient centered objective of lowering the frequency of adjacent segment degeneration is not verified yet.We conducted a meta-analysis according to the guidelines of the Cochrane Collaboration using databases including PubMed, Cochrane Central Register of Controlled Trials and Embase. The inclusion criteria were: 1) Randomized, controlled study of degenerative disc disease of the cervical spine involving single segment or double segments using Cervical disc arthroplasty (CDA) with anterior cervical discectomy and fusion (ACDF) as controls; 2) A minimum of two-year follow-up using imaging and clinical analyses; 3) Definite diagnostic evidences for "adjacent segment degeneration" and "adjacent segment disease"; 4) At least a minimum of 30 patients per population. Two authors independently selected trials; assessed methodological quality, extracted data and the results were pooled.No study has specifically compared the results of adjacent segment degenerative; Two papers describing 140 patients with 162 symptomatic cervical segment disorders and compared the rate of postoperative adjacent segment disease development between CDA and ACDF treatments, three publications describing the rate of adjacent-segment surgery including 1273 patients with symptomatic cervical segments. The result of the meta-analysis indicates that there were fewer the rate of adjacent segment disease and the rate for adjacent-segment surgery comparing CDA with ACDF, but the difference was not statistically significant.Based on available evidence, it cannot be concluded, that CDA can significantly reduce the postoperative rate of the adjacent segment degenerative and adjacent segment disease. However, due to some limitations, the results of this meta-analysis should be cautiously accepted, and further studies are needed

    A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks

    Get PDF
    The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic capabilities of an organism based on minimal assumptions that describe the steady states of the underlying reaction network via suitable stoichiometric constraints, specifically mass balance and energy balance (i.e. thermodynamic feasibility). The implementation of these requirements to generate viable configurations of reaction fluxes and/or to test given flux profiles for thermodynamic feasibility can however prove to be computationally intensive. We propose here a fast and scalable stoichiometry-based method to explore the Gibbs energy landscape of a biochemical network at steady state. The method is applied to the problem of reconstructing the Gibbs energy landscape underlying metabolic activity in the human red blood cell, and to that of identifying and removing thermodynamically infeasible reaction cycles in the Escherichia coli metabolic network (iAF1260). In the former case, we produce consistent predictions for chemical potentials (or log-concentrations) of intracellular metabolites; in the latter, we identify a restricted set of loops (23 in total) in the periplasmic and cytoplasmic core as the origin of thermodynamic infeasibility in a large sample (10610^6) of flux configurations generated randomly and compatibly with the prior information available on reaction reversibility.Comment: 11 pages, 6 figures, 1 table; for associated supporting material see http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.100256

    Hippocampal-Dependent Spatial Memory in the Water Maze is Preserved in an Experimental Model of Temporal Lobe Epilepsy in Rats

    Get PDF
    Cognitive impairment is a major concern in temporal lobe epilepsy (TLE). While different experimental models have been used to characterize TLE-related cognitive deficits, little is known on whether a particular deficit is more associated with the underlying brain injuries than with the epileptic condition per se. Here, we look at the relationship between the pattern of brain damage and spatial memory deficits in two chronic models of TLE (lithium-pilocarpine, LIP and kainic acid, KA) from two different rat strains (Wistar and Sprague-Dawley) using the Morris water maze and the elevated plus maze in combination with MRI imaging and post-morten neuronal immunostaining. We found fundamental differences between LIP- and KA-treated epileptic rats regarding spatial memory deficits and anxiety. LIP-treated animals from both strains showed significant impairment in the acquisition and retention of spatial memory, and were unable to learn a cued version of the task. In contrast, KA-treated rats were differently affected. Sprague-Dawley KA-treated rats learned less efficiently than Wistar KA-treated animals, which performed similar to control rats in the acquisition and in a probe trial testing for spatial memory. Different anxiety levels and the extension of brain lesions affecting the hippocampus and the amydgala concur with spatial memory deficits observed in epileptic rats. Hence, our results suggest that hippocampal-dependent spatial memory is not necessarily affected in TLE and that comorbidity between spatial deficits and anxiety is more related with the underlying brain lesions than with the epileptic condition per se

    DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process.</p> <p>Methods</p> <p>A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry.</p> <p>Results</p> <p>Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone.</p> <p>Conclusions</p> <p>Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair.</p

    Coping and sickness absence

    Get PDF
    Objectives: The aim of this study is to examine the role of coping styles in sickness absence. In line with findings that contrast the reactive-passive focused strategies, problem-solving strategies are generally associated with positive results in terms of well-being and overall health outcomes; our hypothesis is that such strategies are positively related to a low frequency of sickness absence and with short lengths (total number of days absent) and durations (mean duration per spell). Methods: Using a prospective design, employees' (N = 3,628) responses on a self-report coping inventory are used to predict future registered sickness absence (i.e. frequency, length, duration, and median time before the onset of a new sick leave period). Results and conclusions: In accordance with our hypothesis, and after adjustment for potential confounders, employees with an active problem-solving coping strategy are less likely to drop out because of sickness absence in terms of frequency, length (longer than 14 days), and duration (more than 7 days) of sickness absence. This positive effect is observed in the case of seeking social support only for the duration of sickness absence and in the case of palliative reaction only for the length and frequency of absence. In contrast, an avoidant coping style, representing a reactive-passive strategy, increases the likelihood of frequent absences significantly, as well as the length and duration of sickness absence. Expression of emotions, representing another reactive-passive strategy, has no effect on future sickness absenteeism. The median time before the onset of a new episode of absenteeism is significantly extended for active problem-solving and reduced for avoidance and for a palliative response. The results of the present study support the notion that problem-solving coping and reactive-passive strategies are inextricably connected to frequency, duration, length and onset of sickness absence. Especially, active problem-solving decreases the chance of future sickness absence. © Springer-Verlag 2007

    Pulsating White Dwarf Stars and Precision Asteroseismology

    Full text link
    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.Comment: 70 pages, 11 figures, to be published in Annual Review of Astronomy and Astrophysics 200

    Medical conditions in autism spectrum disorders

    Get PDF
    Autism spectrum disorder (ASD) is a behaviourally defined syndrome where the etiology and pathophysiology is only partially understood. In a small proportion of children with the condition, a specific medical disorder is identified, but the causal significance in many instances is unclear. Currently, the medical conditions that are best established as probable causes of ASD include Fragile X syndrome, Tuberous Sclerosis and abnormalities of chromosome 15 involving the 15q11-13 region. Various other single gene mutations, genetic syndromes, chromosomal abnormalities and rare de novo copy number variants have been reported as being possibly implicated in etiology, as have several ante and post natal exposures and complications. However, in most instances the evidence base for an association with ASD is very limited and largely derives from case reports or findings from small, highly selected and uncontrolled case series. Not only therefore, is there uncertainty over whether the condition is associated, but the potential basis for the association is very poorly understood. In some cases the medical condition may be a consequence of autism or simply represent an associated feature deriving from an underlying shared etiology. Nevertheless, it is clear that in a growing proportion of individuals potentially causal medical conditions are being identified and clarification of their role in etio-pathogenesis is necessary. Indeed, investigations into the causal mechanisms underlying the association between conditions such as tuberous sclerosis, Fragile X and chromosome 15 abnormalities are beginning to cast light on the molecular and neurobiological pathways involved in the pathophysiology of ASD. It is evident therefore, that much can be learnt from the study of probably causal medical disorders as they represent simpler and more tractable model systems in which to investigate causal mechanisms. Recent advances in genetics, molecular and systems biology and neuroscience now mean that there are unparalleled opportunities to test causal hypotheses and gain fundamental insights into the nature of autism and its development

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway
    corecore